
The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 1

CAP

The CyberSpae Arhiteture Projet



1994,95 by Andreas Leue

Objet Oriented Views

I Wear My Sunglasses at Night

This paper desribes Objet Oriented Views (OOV) and how to use them to build an

integrated objet oriented system whih supports the views of di�erent users. The

onept of orientation not only to an objet, but also to a subjet is introdued.

Finally the relation to the Cyberspae Objet Arhiteture (COA) and other

implementation issues are desribed.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 2

An Objet Oriented View (OOV) of some objets (blue balls).

From the subjet's personal point of view they look like yellow pyramids.

1 Introdution

Stated in one word, OOVs are small, surveyable lass and objet models. The purpose of

the onept of OOVs is to emphasize the role of suh small standalone models.

OOVs are the interfae between losed subsystems and the rest of the system, probably

the whole outer world. Modeling these OOV interfaes gives a preise desription of the

oupling of the subsystems to their environment, whih is a valueable base for porting,

adapting or maintaining them.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 3

Furthermore, OOVs provide a desription of a system related to a users point of view, thus

inorporating subjet orientation. This gives the freedom to ignore uninteresting aspets

and to use subjetive ones.

An objet oriented system with OOVs is not desribed by one hierarhially ordered

lass model. Instead, there an be one or more "entral" lass models, and several OOVs.

The oupling between them is desribed by various relations, suh as lassial inheritane

1

relations, dynami inheritane relations and, most exible but umbersome, enapsulation

relations.

The emphasis of the subjetive role of lass models and arbitrarily oupled subsystems, is

in ontrast to hierarhial and somewhat monolithi lass models more suitable to desribe

omplex and open systems.

1

The term inheritane is used intentional in this text, sine they are only one kind of implementation

of generalisation relations, namely stati ones.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 4

2 Origins of OOV

The next two setions give some information illustrating the bakground of OOVs.

2.1 Conits in Objet Oriented Design

View 2

View 3

View 1

Model
Common+ =

Integrating di�erent views into one model.

The �rst setion refers to objet oriented modeling. To design a good model one has to

analyze �rst the various needs of the users of the system. There may be several views

depending on the point of view. These views have to be integrated into one model.

The �gure above shows that in a somewhat shemati fashion. The term "view" is used

here for requirements, lassi�ation, strategies et. a user applies to a system. "Model"

denotes an objet oriented model used to desribe the system, and a "user" is someone

who has to deal with this model, as a real end user or as a programmer.

It is the art of designing to perform this integration satisfying, and it is possible to reate

good systems that way. But there is nevertheless a more general problem assoiated with.

Consider the following �gure.

?
How to de�ne the boundary of the ommon model?

Given the three views, there are two natural limits between whih the resulting model

will be plaed sensibly.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 5

The �rst is the union of all requirements: a model inorporating all of them is ertainly

omplete enough, but eah user of the model has likely to deal with some requirements

of other users, whih are of no interest to him.

The seond limit is the intersetion of the requirements: in this ase, no user will be

onfronted with any other users requirements, but the model is most likely inomplete.

It is di�ult to de�ne the boundary of the model between these two limits. This is beause

ompleteness and ease of surveyane are ontraditory requirements.

Taking other requirements suh as maintainability into aount leads to the objet oriented

design approah: to fous on the objets, their identity, states and behaviour. The result

resembles the seond approah above, but is more "objetive". Sine the fous is on the

objet properties, the subjetive requirements are ignored. This loads a burdon on the

user, who probably is not primarily interested in objetivity.

View 1

Model
Common

View 2

View 3

Design an objet oriented model, but add subjetive views.

The �gure shows a solution: perform not only a good objet oriented design of the ommon

objets, but apply the same method to model the views of the users and link the results

together.

Eah of the models, the ommon one and the views, are easy to survey, and togther they

form a omplete desription of the whole system.

Note that there is another level of abstration introdued: it is given by the last �gure

and shows how the various models and views are related to eah other.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 6

2.2 The Notion of Appliations

The seond setion desribes the evolution of the onept of an appliation.

Program

Program

In the beginning, there were only programs.

In the good old days, there were no appliations. There were only programs, and if you

had real luk, you ould �nd a devie driver or some small system servie.

Application

On the solid ground of hardware, layers of system servies

founded a base for appliations.

Next, the deade of the solid founded systems arised. There were operating systems,

based on the solid ground of the hardware. They were arranged in layers, the higher ones

providing more and more sophistiated servies. At the end, it looked like there will be

nothing left to do behind the highest levels, where now the appliations resided.

There were some problems, of ourse, if the layers hanged or grewed. Nevertheless, they

did hange and grew, and the solid ground turned out not to be solid at all. Even worse,

the need for moving an appliation to another system - bad idea - arised.

But a solution was easy to �nd: put yet another layer on the top.

This last layer had to have the speial property not to hange. This lead to the examina-

tion of the ommon and invariant properties of layers serving similar purposes. A good

example are Graphial User Interfaes (GUI).



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 7

An improvement of the model of layers on the solid ground was the shell model, whih is

shown in the following �gure:

Application

The solid hardware ground shrinks to a system kernel.

This shell model is an improvement sine the notion of a kernel is a more realisti piture

than a solid hardware ground. But still, the system servies are the entral entity and the

area of the appliations is unde�ned and somewhat only an add-on. And of ourse, the

systems hange and grew and are far not something stati like the term "kernel" suggests.

So, after the deline of the solid ground, the systems learned at least to move. Today, in

the ontext of omplex, open and world wide onneted systems, the notion of hanging

systems further evolves to an unde�ned and unforeseeable environment. The systems are

no longer stati points to refer to.

This is no loss, sine it fores one to onentrate on the tasks to perform and to ask again

on what base to plae the appliations.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 8

Consequently, let's reverse the last piture and put the appliation in the enter:

Application

An appliation in the open world.

The appliation is now the entral instane, embedded in some layers sreening it from

the world's spei� elements, a kind of ex{apsulation.

This reversion is not an aademi one, but implies several onsequenes and advantages:

� The onentration on the appliation frees from the need to de�ne general layers

for all possible appliations. An appliation an be embedded in a very subjetive

environment.

� The fous on the appliation implies to be best prepared for porting purposes, sine

ideally only the appliations needs are desribed, and no implementation aspets.

� Starting from the appliations needs, one an build more surveyable systems better

suited for a given task.

This piture reets an old approah of software engineering: to onentrate on the tasks

to perform and the needs of "the appliation".



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 9

Appliations and Objets

Another hange an be observed: the replaement of "appliations" with "objets".

GUI

Application

(...of GUI?!)

A GUI system and an appliation of it.

Reasoning over the term "appliation", one an ask who or what exatly is applied to

whom or what? The term is in fat per�dious, it states impliitly that a software appli-

ation is only an appliation (verbal) of some system, whih is the entral and interesting

part, as the �gure above illustrates.

To desribe evolving and big systems with many interating and speialised omponents

other terms seem better suited: ooperating omponents, servie provider and lients,

ommuniation. And, most important: objets. The term "appliation" is no longer

appropriate in suh systems. The following �gure shows this hange.

Object

GUI

An objet using GUI servies provided by another objet.

This also emphasizes the new role of "appliations": systems designed to solve a spei�

task, whih are no longer onsidered as simple supplements to the real systems, but as

the entral and �nally solely important part. Consequently, it emphasizes the need of

appropriate frames for suh systems.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 10

The Final Piture

Taking also into aount that appliations themselves beome more strutured, exible,

ustomizable and share more ode with eah other, the following piture may give a good

impression of today's open, omplex and worldwide onneted systems:

Obj

Obj

Obj

Obj

Objets oating in today's environments.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 11

3 Objet Oriented Views

Object

View

Subject

An objet oriented view of an objet from a subjet's point of view.

OOVs are small surveyable lass and objet models. They represent a well suited interfae

allowing aess to some system with regard to spei� needs of a user. They are

Objet Oriented in that they fous on the objets of the system, their identity, states

and behaviour and the modeling tehnique used is an objet oriented one; they are

also

Subjet Oriented sine they respet an expliit user { the subjet { of the model and

reet it's personal point of view of the objets.

OOVs do represent objets from the point of the viewer.

2

They enapsulate uninteresting

aspets of these objets and allow to view and manipulate them appropriate to the needs

of the users.

The link between OOVs and the rest of the system may be of any kind. They do not need

to be plaed in a hierarhial lass model, but they an. There are three main ategories

of relations between OOVs and the environment:

Inheritane Relations onnet the OOVs lasses as bases to the model, using mutliple

inheritane as a mean to reate di�erent interfaes to the same objet.

Dynami Inheritane Relations serve for the same purpose from a logial point of

view, but do not require the base lass to exist statially.

Enapsulation Relations are used if there is no learly de�ned one-to-one relation or

if the relation is not of a generalisation kind. They are most exible but ause the

most work, too.

For the �rst kind of relations there is support given by OOPLs, but for the seond and

third one there is none. To provide some support for these relations is a goal of OOVs

(see ??).

2

From a system or implementational point of view they probably ontain only interfaes to the "real"

objets



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 12

3.1 Subjet Orientation

OOVs represent a diret onsequene of applying the priniple of Subjet Orientation.

Eah subjet (user) has a spei� point of view, from whih results a subjetive view of the

system. This view is the link between the subjet and the system. It allows the pereption

and manipulation of the system in a manner whih is well suited for the subjets needs.

Suh a subjetive view gives the freedom to ignore uninteresting aspets of the system

and to add subjetive ones.

3.2 Aspets

An aspet haraterizes the point of view one an take on. Eah OOV is reated and

designed under a given aspet, whih results from the perspetive of the viewer.

Sine it may be useful to request servies from objets at runtime with respet to the

requester's point of view (e.g. reating a presentation of the objet), this point of view

has to be aptured somehow and passed as a parameter of the request. This is the purpose

of Aspets.

Aspets are not idential with subjets, and there is not neessarily a 1-to-1 relation,

sine Aspets may be more abstrat. An Aspet may desribe a group of points of view.

3.3 OOVs and Frameworks

This setion explains the relation between OOVs and frameworks, sine there are some

similarities, but also di�erenes.

Both OOVs and frameworks have in ommon that they apture a whole set of objets and

lasses and not only single entities. This is a useful and neessary extension of simpler

lass libraries sine it allows to apture important aspets of overall system design in

addition to the provision of building bloks.

But while frameworks provide also a on�gurable instantiation of using the system -

an appliation of the system -, OOVs do only provide integrated objets and lasses

(primarily) without suh an appliation skeleton.

It may be a lear design approah of frameworks to seperate these two aspets: to build

an expliit platform (like an OOV) and to plae an ustomizable appliation proess lass

onto it.

Seperating these aspets a user has more freedom in applying a framework. This is useful,

sine the proess skeleton of a framework may in some ases be insuÆient. Integrating

the proess with the environment and giving the user no hane to hange the frameworks

kernel implies the statement, that this framework is in 100 perent of appliations orret

and usable. Suh a high perentage is most unlikely to be observed in the real world.

But there are further di�erenes between OOVs and frameworks.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 13

3.3.1 The Bridge of Abstration

Frameworks are a ontinuation of lass libraries in that they serve the purpose of providing

(more or less) ommon funtionalitites to a group of appliers. In ontrast to this, OOVs

fous on a onrete user and are applied in designing a onrete system. They serve as a

building blok on the other side of the Bridge of Abstration, whih leads over the River

of Complexity as shown in the following �gure.

Driver

Libraries APIs

Objects

OOVs
Frameworks

World User

River of Complexity

Bridge of Abstraction

The Bridge of Abstration leads over the River of Complexity.

This simpli�ed �gure shows only the role of software.

Coming from the left side { a onrete part of the world { the briks are abstrating from

the details and beome more and more general. Walking on to the right, there is a turn

in this behaviour: the briks beome again onrete, but now with regard to the user.

It is important to notie this fat, sine it implies the refusal of the idea of "general

problem solvers", whih an be used to solve every problem a user may have. "General"

solutions represent only the left half of the bridge.

The other half is made of onrete work again, whih, important enough, ontains every

material relevant to reusage and big e�orts of a user's investment.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 14

4 Glue

As desribed in setion ??, OOVs and the system they represent may be linked together

in three ways: inheritane relations, dynami inheritane relations and enapsulation

relations.

There are two types of support for these relations neessary:

Design Level Support The �rst type of support is on the desgin level. That means

providing tools for objet oriented design whih support OOVs and allow to speify

the onnetion as easy as possible. Design level support is not desribed in this

doument.

Implementation Level Support The seond type of support is to implement the de-

sired funtionality of the relations. This support may be onsidered as the glue

between di�erent OOVs and system parts.

4.1 Implementation Level Support

Support annot be given in a general and omplete manner, sine enapsulation relations

may be in fat anything. Therefore omplete support means introduing a programming

language, fortunately they do already exist.

But support an be provided for several subproblems, whih saves work at least in some,

if not in many ases.

Implementation level support is given by

The CyberSpae Objet Arhiteture COA provides means to link and manage as-

pet dependent views on a per-objet basis. COA objets provide mehanisms to

aess mahine or human suited interfaes to them under given aspets and to man-

age these resulting interfaes. For details see [?℄.

Dynami Objet Models To support the generation and usage of OOVs at runtime,

mehanisms for handling dynami objet models are needed. Clearly, this kind of

support is not neessary for interpreted languages.

Integration, Synhronisation, Global Aspets To support various tasks like inte-

gration, synhronisation and other global aspets an instane is neessary whih

provides suh servies and works in onjuntion with the respetive (COA) objets.

This instane may be an objet representing the view, analogous to the COA Shell

for a single objet.

Other servies may be of interest, whih will be identi�ed if there is some experiene with

OOVs. The lasses View and Shell may serve as a useful platform for suh servies.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 15

4.2 Classes

Next to the lasses of COA ([?℄), whih provide a main part of support, some further

lasses shall be mentioned in the ontext of OOVs.

First, the lasses Class and Objet are used to support dynami objet models, if ne-

essary. This is a task not only of interest in onjuntion with OOVs and not explained in

this doument.

Seond, the lass View may serve for two purposes. There are two kinds of Views.

class
ObjectView

class
ClassView

4.2.1 Class ObjetView

ObjetViews are similar to Shells of COA objets. They ontain a group of objets

omposing a onrete view.

ObjetViews support various tasks like integration, synhronisation and other global as-

pets.

A good example of applying ObjetViews is view persistane. ObjetViews allow to store

and retrieve ompliated views and to move them around.

4.2.2 Class ClassView

In ontrast to ObjetViews a ClassView ontains a lass model based on whih several

ObjetViews may be reated.

Thus ClassViews are a kind of Aspets: they serve as a �lter, whih an be used as a

parameter when reating an ObjetView.

ClassViews are more spei� than Aspets. Aspets are typially an abstrat desription

of points of view, while a ClassView is very onrete. It desribes the exat form of the

result the requester wants to have in terms of lasses and their relations.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 16

5 Taking Bene�t

The onept of Objet Oriented Views and their support on the design and implementation

level has many advantages.

Small and Surveyable Class Models

an be reated with OOVs without paying the prie of unomplete systems. There

is no need for one big hierarhial lass model desribing the whole system. OOVs

provide a mean to divide a system in several smaller lass models. This is more

suitable to desribe omplex and open systems.

Subjet Orientation

is a major design priniples made available by OOVs. This allows to onentrate on

a spei� user's needs, whih gives the freedom to ignore uninteresting aspets and

to use subjetive ones.

Subsystem Enapsulation

Sine OOVs provide a well de�ned boundary between subsystems and their environ-

ment, they serve as a valuable base for porting, adapting or maintaining them.

Leadership of Users

Using OOVs the users an get bak the ontrol over de�ning their needs: it is not

longer neessary that a servie provider de�nes what the state of the art is and the

user has to adopt his system; instead the user de�nes what he needs and the servie

provider has to ful�ll these needs. The roles hange.

Saving Investments

Sine OOVs primarily desribe a spei� users needs, they an be reused, even if the

overall system hanges. This is ahieved sine there is no integration of OOVs into

one model and therefore the user spei� information is preserved.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-OOV - page 17

6 Conlusion

Objet Oriented Views, providing small surveyable lass models, may serve to meet the

users needs of viewing and manipulating his environment.

They support the design priniple of subjet orientation and provide means for porting

and reusing subsystems, thus helping to save taken investments.

OOVs are omplemented by COA objets, together they provide a exible and powerful

base for building modern software systems.


