
The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 1

CAP

The CyberSpa
e Ar
hite
ture Proje
t





1994,95 by Andreas Leue

Obje
t Oriented Views

I Wear My Sunglasses at Night

This paper des
ribes Obje
t Oriented Views (OOV) and how to use them to build an

integrated obje
t oriented system whi
h supports the views of di�erent users. The


on
ept of orientation not only to an obje
t, but also to a subje
t is introdu
ed.

Finally the relation to the Cyberspa
e Obje
t Ar
hite
ture (COA) and other

implementation issues are des
ribed.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 2

An Obje
t Oriented View (OOV) of some obje
ts (blue balls).

From the subje
t's personal point of view they look like yellow pyramids.

1 Introdu
tion

Stated in one word, OOVs are small, surveyable 
lass and obje
t models. The purpose of

the 
on
ept of OOVs is to emphasize the role of su
h small standalone models.

OOVs are the interfa
e between 
losed subsystems and the rest of the system, probably

the whole outer world. Modeling these OOV interfa
es gives a pre
ise des
ription of the


oupling of the subsystems to their environment, whi
h is a valueable base for porting,

adapting or maintaining them.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 3

Furthermore, OOVs provide a des
ription of a system related to a users point of view, thus

in
orporating subje
t orientation. This gives the freedom to ignore uninteresting aspe
ts

and to use subje
tive ones.

An obje
t oriented system with OOVs is not des
ribed by one hierar
hi
ally ordered


lass model. Instead, there 
an be one or more "
entral" 
lass models, and several OOVs.

The 
oupling between them is des
ribed by various relations, su
h as 
lassi
al inheritan
e

1

relations, dynami
 inheritan
e relations and, most 
exible but 
umbersome, en
apsulation

relations.

The emphasis of the subje
tive role of 
lass models and arbitrarily 
oupled subsystems, is

in 
ontrast to hierar
hi
al and somewhat monolithi
 
lass models more suitable to des
ribe


omplex and open systems.

1

The term inheritan
e is used intentional in this text, sin
e they are only one kind of implementation

of generalisation relations, namely stati
 ones.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 4

2 Origins of OOV

The next two se
tions give some information illustrating the ba
kground of OOVs.

2.1 Con
i
ts in Obje
t Oriented Design

View 2

View 3

View 1

Model
Common+ =

Integrating di�erent views into one model.

The �rst se
tion refers to obje
t oriented modeling. To design a good model one has to

analyze �rst the various needs of the users of the system. There may be several views

depending on the point of view. These views have to be integrated into one model.

The �gure above shows that in a somewhat s
hemati
 fashion. The term "view" is used

here for requirements, 
lassi�
ation, strategies et
. a user applies to a system. "Model"

denotes an obje
t oriented model used to des
ribe the system, and a "user" is someone

who has to deal with this model, as a real end user or as a programmer.

It is the art of designing to perform this integration satisfying, and it is possible to 
reate

good systems that way. But there is nevertheless a more general problem asso
iated with.

Consider the following �gure.

?
How to de�ne the boundary of the 
ommon model?

Given the three views, there are two natural limits between whi
h the resulting model

will be pla
ed sensibly.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 5

The �rst is the union of all requirements: a model in
orporating all of them is 
ertainly


omplete enough, but ea
h user of the model has likely to deal with some requirements

of other users, whi
h are of no interest to him.

The se
ond limit is the interse
tion of the requirements: in this 
ase, no user will be


onfronted with any other users requirements, but the model is most likely in
omplete.

It is di�
ult to de�ne the boundary of the model between these two limits. This is be
ause


ompleteness and ease of surveyan
e are 
ontradi
tory requirements.

Taking other requirements su
h as maintainability into a

ount leads to the obje
t oriented

design approa
h: to fo
us on the obje
ts, their identity, states and behaviour. The result

resembles the se
ond approa
h above, but is more "obje
tive". Sin
e the fo
us is on the

obje
t properties, the subje
tive requirements are ignored. This loads a burdon on the

user, who probably is not primarily interested in obje
tivity.

View 1

Model
Common

View 2

View 3

Design an obje
t oriented model, but add subje
tive views.

The �gure shows a solution: perform not only a good obje
t oriented design of the 
ommon

obje
ts, but apply the same method to model the views of the users and link the results

together.

Ea
h of the models, the 
ommon one and the views, are easy to survey, and togther they

form a 
omplete des
ription of the whole system.

Note that there is another level of abstra
tion introdu
ed: it is given by the last �gure

and shows how the various models and views are related to ea
h other.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 6

2.2 The Notion of Appli
ations

The se
ond se
tion des
ribes the evolution of the 
on
ept of an appli
ation.

Program

Program

In the beginning, there were only programs.

In the good old days, there were no appli
ations. There were only programs, and if you

had real lu
k, you 
ould �nd a devi
e driver or some small system servi
e.

Application

On the solid ground of hardware, layers of system servi
es

founded a base for appli
ations.

Next, the de
ade of the solid founded systems arised. There were operating systems,

based on the solid ground of the hardware. They were arranged in layers, the higher ones

providing more and more sophisti
ated servi
es. At the end, it looked like there will be

nothing left to do behind the highest levels, where now the appli
ations resided.

There were some problems, of 
ourse, if the layers 
hanged or grewed. Nevertheless, they

did 
hange and grew, and the solid ground turned out not to be solid at all. Even worse,

the need for moving an appli
ation to another system - bad idea - arised.

But a solution was easy to �nd: put yet another layer on the top.

This last layer had to have the spe
ial property not to 
hange. This lead to the examina-

tion of the 
ommon and invariant properties of layers serving similar purposes. A good

example are Graphi
al User Interfa
es (GUI).



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 7

An improvement of the model of layers on the solid ground was the shell model, whi
h is

shown in the following �gure:

Application

The solid hardware ground shrinks to a system kernel.

This shell model is an improvement sin
e the notion of a kernel is a more realisti
 pi
ture

than a solid hardware ground. But still, the system servi
es are the 
entral entity and the

area of the appli
ations is unde�ned and somewhat only an add-on. And of 
ourse, the

systems 
hange and grew and are far not something stati
 like the term "kernel" suggests.

So, after the de
line of the solid ground, the systems learned at least to move. Today, in

the 
ontext of 
omplex, open and world wide 
onne
ted systems, the notion of 
hanging

systems further evolves to an unde�ned and unforeseeable environment. The systems are

no longer stati
 points to refer to.

This is no loss, sin
e it for
es one to 
on
entrate on the tasks to perform and to ask again

on what base to pla
e the appli
ations.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 8

Consequently, let's reverse the last pi
ture and put the appli
ation in the 
enter:

Application

An appli
ation in the open world.

The appli
ation is now the 
entral instan
e, embedded in some layers s
reening it from

the world's spe
i�
 elements, a kind of ex{
apsulation.

This reversion is not an a
ademi
 one, but implies several 
onsequen
es and advantages:

� The 
on
entration on the appli
ation frees from the need to de�ne general layers

for all possible appli
ations. An appli
ation 
an be embedded in a very subje
tive

environment.

� The fo
us on the appli
ation implies to be best prepared for porting purposes, sin
e

ideally only the appli
ations needs are des
ribed, and no implementation aspe
ts.

� Starting from the appli
ations needs, one 
an build more surveyable systems better

suited for a given task.

This pi
ture re
e
ts an old approa
h of software engineering: to 
on
entrate on the tasks

to perform and the needs of "the appli
ation".



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 9

Appli
ations and Obje
ts

Another 
hange 
an be observed: the repla
ement of "appli
ations" with "obje
ts".

GUI

Application

(...of GUI?!)

A GUI system and an appli
ation of it.

Reasoning over the term "appli
ation", one 
an ask who or what exa
tly is applied to

whom or what? The term is in fa
t per�dious, it states impli
itly that a software appli-


ation is only an appli
ation (verbal) of some system, whi
h is the 
entral and interesting

part, as the �gure above illustrates.

To des
ribe evolving and big systems with many intera
ting and spe
ialised 
omponents

other terms seem better suited: 
ooperating 
omponents, servi
e provider and 
lients,


ommuni
ation. And, most important: obje
ts. The term "appli
ation" is no longer

appropriate in su
h systems. The following �gure shows this 
hange.

Object

GUI

An obje
t using GUI servi
es provided by another obje
t.

This also emphasizes the new role of "appli
ations": systems designed to solve a spe
i�


task, whi
h are no longer 
onsidered as simple supplements to the real systems, but as

the 
entral and �nally solely important part. Consequently, it emphasizes the need of

appropriate frames for su
h systems.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 10

The Final Pi
ture

Taking also into a

ount that appli
ations themselves be
ome more stru
tured, 
exible,


ustomizable and share more 
ode with ea
h other, the following pi
ture may give a good

impression of today's open, 
omplex and worldwide 
onne
ted systems:

Obj

Obj

Obj

Obj

Obje
ts 
oating in today's environments.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 11

3 Obje
t Oriented Views

Object

View

Subject

An obje
t oriented view of an obje
t from a subje
t's point of view.

OOVs are small surveyable 
lass and obje
t models. They represent a well suited interfa
e

allowing a

ess to some system with regard to spe
i�
 needs of a user. They are

Obje
t Oriented in that they fo
us on the obje
ts of the system, their identity, states

and behaviour and the modeling te
hnique used is an obje
t oriented one; they are

also

Subje
t Oriented sin
e they respe
t an expli
it user { the subje
t { of the model and

re
e
t it's personal point of view of the obje
ts.

OOVs do represent obje
ts from the point of the viewer.

2

They en
apsulate uninteresting

aspe
ts of these obje
ts and allow to view and manipulate them appropriate to the needs

of the users.

The link between OOVs and the rest of the system may be of any kind. They do not need

to be pla
ed in a hierar
hi
al 
lass model, but they 
an. There are three main 
ategories

of relations between OOVs and the environment:

Inheritan
e Relations 
onne
t the OOVs 
lasses as bases to the model, using mutliple

inheritan
e as a mean to 
reate di�erent interfa
es to the same obje
t.

Dynami
 Inheritan
e Relations serve for the same purpose from a logi
al point of

view, but do not require the base 
lass to exist stati
ally.

En
apsulation Relations are used if there is no 
learly de�ned one-to-one relation or

if the relation is not of a generalisation kind. They are most 
exible but 
ause the

most work, too.

For the �rst kind of relations there is support given by OOPLs, but for the se
ond and

third one there is none. To provide some support for these relations is a goal of OOVs

(see ??).

2

From a system or implementational point of view they probably 
ontain only interfa
es to the "real"

obje
ts



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 12

3.1 Subje
t Orientation

OOVs represent a dire
t 
onsequen
e of applying the prin
iple of Subje
t Orientation.

Ea
h subje
t (user) has a spe
i�
 point of view, from whi
h results a subje
tive view of the

system. This view is the link between the subje
t and the system. It allows the per
eption

and manipulation of the system in a manner whi
h is well suited for the subje
ts needs.

Su
h a subje
tive view gives the freedom to ignore uninteresting aspe
ts of the system

and to add subje
tive ones.

3.2 Aspe
ts

An aspe
t 
hara
terizes the point of view one 
an take on. Ea
h OOV is 
reated and

designed under a given aspe
t, whi
h results from the perspe
tive of the viewer.

Sin
e it may be useful to request servi
es from obje
ts at runtime with respe
t to the

requester's point of view (e.g. 
reating a presentation of the obje
t), this point of view

has to be 
aptured somehow and passed as a parameter of the request. This is the purpose

of Aspe
ts.

Aspe
ts are not identi
al with subje
ts, and there is not ne
essarily a 1-to-1 relation,

sin
e Aspe
ts may be more abstra
t. An Aspe
t may des
ribe a group of points of view.

3.3 OOVs and Frameworks

This se
tion explains the relation between OOVs and frameworks, sin
e there are some

similarities, but also di�eren
es.

Both OOVs and frameworks have in 
ommon that they 
apture a whole set of obje
ts and


lasses and not only single entities. This is a useful and ne
essary extension of simpler


lass libraries sin
e it allows to 
apture important aspe
ts of overall system design in

addition to the provision of building blo
ks.

But while frameworks provide also a 
on�gurable instantiation of using the system -

an appli
ation of the system -, OOVs do only provide integrated obje
ts and 
lasses

(primarily) without su
h an appli
ation skeleton.

It may be a 
lear design approa
h of frameworks to seperate these two aspe
ts: to build

an expli
it platform (like an OOV) and to pla
e an 
ustomizable appli
ation pro
ess 
lass

onto it.

Seperating these aspe
ts a user has more freedom in applying a framework. This is useful,

sin
e the pro
ess skeleton of a framework may in some 
ases be insuÆ
ient. Integrating

the pro
ess with the environment and giving the user no 
han
e to 
hange the frameworks

kernel implies the statement, that this framework is in 100 per
ent of appli
ations 
orre
t

and usable. Su
h a high per
entage is most unlikely to be observed in the real world.

But there are further di�eren
es between OOVs and frameworks.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 13

3.3.1 The Bridge of Abstra
tion

Frameworks are a 
ontinuation of 
lass libraries in that they serve the purpose of providing

(more or less) 
ommon fun
tionalitites to a group of appliers. In 
ontrast to this, OOVs

fo
us on a 
on
rete user and are applied in designing a 
on
rete system. They serve as a

building blo
k on the other side of the Bridge of Abstra
tion, whi
h leads over the River

of Complexity as shown in the following �gure.

Driver

Libraries APIs

Objects

OOVs
Frameworks

World User

River of Complexity

Bridge of Abstraction

The Bridge of Abstra
tion leads over the River of Complexity.

This simpli�ed �gure shows only the role of software.

Coming from the left side { a 
on
rete part of the world { the bri
ks are abstra
ting from

the details and be
ome more and more general. Walking on to the right, there is a turn

in this behaviour: the bri
ks be
ome again 
on
rete, but now with regard to the user.

It is important to noti
e this fa
t, sin
e it implies the refusal of the idea of "general

problem solvers", whi
h 
an be used to solve every problem a user may have. "General"

solutions represent only the left half of the bridge.

The other half is made of 
on
rete work again, whi
h, important enough, 
ontains every

material relevant to reusage and big e�orts of a user's investment.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 14

4 Glue

As des
ribed in se
tion ??, OOVs and the system they represent may be linked together

in three ways: inheritan
e relations, dynami
 inheritan
e relations and en
apsulation

relations.

There are two types of support for these relations ne
essary:

Design Level Support The �rst type of support is on the desgin level. That means

providing tools for obje
t oriented design whi
h support OOVs and allow to spe
ify

the 
onne
tion as easy as possible. Design level support is not des
ribed in this

do
ument.

Implementation Level Support The se
ond type of support is to implement the de-

sired fun
tionality of the relations. This support may be 
onsidered as the glue

between di�erent OOVs and system parts.

4.1 Implementation Level Support

Support 
annot be given in a general and 
omplete manner, sin
e en
apsulation relations

may be in fa
t anything. Therefore 
omplete support means introdu
ing a programming

language, fortunately they do already exist.

But support 
an be provided for several subproblems, whi
h saves work at least in some,

if not in many 
ases.

Implementation level support is given by

The CyberSpa
e Obje
t Ar
hite
ture COA provides means to link and manage as-

pe
t dependent views on a per-obje
t basis. COA obje
ts provide me
hanisms to

a

ess ma
hine or human suited interfa
es to them under given aspe
ts and to man-

age these resulting interfa
es. For details see [?℄.

Dynami
 Obje
t Models To support the generation and usage of OOVs at runtime,

me
hanisms for handling dynami
 obje
t models are needed. Clearly, this kind of

support is not ne
essary for interpreted languages.

Integration, Syn
hronisation, Global Aspe
ts To support various tasks like inte-

gration, syn
hronisation and other global aspe
ts an instan
e is ne
essary whi
h

provides su
h servi
es and works in 
onjun
tion with the respe
tive (COA) obje
ts.

This instan
e may be an obje
t representing the view, analogous to the COA Shell

for a single obje
t.

Other servi
es may be of interest, whi
h will be identi�ed if there is some experien
e with

OOVs. The 
lasses View and Shell may serve as a useful platform for su
h servi
es.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 15

4.2 Classes

Next to the 
lasses of COA ([?℄), whi
h provide a main part of support, some further


lasses shall be mentioned in the 
ontext of OOVs.

First, the 
lasses Class and Obje
t are used to support dynami
 obje
t models, if ne
-

essary. This is a task not only of interest in 
onjun
tion with OOVs and not explained in

this do
ument.

Se
ond, the 
lass View may serve for two purposes. There are two kinds of Views.

class
ObjectView

class
ClassView

4.2.1 Class Obje
tView

Obje
tViews are similar to Shells of COA obje
ts. They 
ontain a group of obje
ts


omposing a 
on
rete view.

Obje
tViews support various tasks like integration, syn
hronisation and other global as-

pe
ts.

A good example of applying Obje
tViews is view persistan
e. Obje
tViews allow to store

and retrieve 
ompli
ated views and to move them around.

4.2.2 Class ClassView

In 
ontrast to Obje
tViews a ClassView 
ontains a 
lass model based on whi
h several

Obje
tViews may be 
reated.

Thus ClassViews are a kind of Aspe
ts: they serve as a �lter, whi
h 
an be used as a

parameter when 
reating an Obje
tView.

ClassViews are more spe
i�
 than Aspe
ts. Aspe
ts are typi
ally an abstra
t des
ription

of points of view, while a ClassView is very 
on
rete. It des
ribes the exa
t form of the

result the requester wants to have in terms of 
lasses and their relations.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 16

5 Taking Bene�t

The 
on
ept of Obje
t Oriented Views and their support on the design and implementation

level has many advantages.

Small and Surveyable Class Models


an be 
reated with OOVs without paying the pri
e of un
omplete systems. There

is no need for one big hierar
hi
al 
lass model des
ribing the whole system. OOVs

provide a mean to divide a system in several smaller 
lass models. This is more

suitable to des
ribe 
omplex and open systems.

Subje
t Orientation

is a major design prin
iples made available by OOVs. This allows to 
on
entrate on

a spe
i�
 user's needs, whi
h gives the freedom to ignore uninteresting aspe
ts and

to use subje
tive ones.

Subsystem En
apsulation

Sin
e OOVs provide a well de�ned boundary between subsystems and their environ-

ment, they serve as a valuable base for porting, adapting or maintaining them.

Leadership of Users

Using OOVs the users 
an get ba
k the 
ontrol over de�ning their needs: it is not

longer ne
essary that a servi
e provider de�nes what the state of the art is and the

user has to adopt his system; instead the user de�nes what he needs and the servi
e

provider has to ful�ll these needs. The roles 
hange.

Saving Investments

Sin
e OOVs primarily des
ribe a spe
i�
 users needs, they 
an be reused, even if the

overall system 
hanges. This is a
hieved sin
e there is no integration of OOVs into

one model and therefore the user spe
i�
 information is preserved.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-OOV - page 17

6 Con
lusion

Obje
t Oriented Views, providing small surveyable 
lass models, may serve to meet the

users needs of viewing and manipulating his environment.

They support the design prin
iple of subje
t orientation and provide means for porting

and reusing subsystems, thus helping to save taken investments.

OOVs are 
omplemented by COA obje
ts, together they provide a 
exible and powerful

base for building modern software systems.


