The CyberSpace Architecture Project - Document CAP-10/95-COA - page 1

The CyberSpace Architecture Project

(©1994,95 by Andreas Leue

THE CYBERSPACE OBJECT ARCHITECTURE

BUILDING ADAPTABLE AND RICH EQUIPPED OBJECTS

This paper describes the CyberSpace Object Architecture (COA), which describes a model
for objects designed to meet the requirements given by todays complex and open systems
and environments. The model is based on the object model of current object oriented
techniques used in design and programming. It does not only extend this model, thereby
introducing degrees of freedom between design and implementation, but also fits
seemlessly into it, making integration of COA objects easy.

The paper also shows the relation between COA, the CyberSpace Foundation (CSF) and
object oriented views (OOV) and the synergetic effects achieved.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 2

This picture illustrates the architecture of a COA object.
It’s Shell (blue) encapsulates the Kernel (red) and the
Accessorys (violet) surrounding the Kernel.

1 Introduction

Why introducing another object model?

The COA object model is not a new model, but a straightforward extension and improve-
ment of the common object model. It is based on and made of ordinary objects, and
COA objects just look like these. COA is an object architecture, providing services and a
framework for building sophisticated objects.

COA objects are dseigned to meet the requirements given by todays complex and open
systems. The concept of COA is to focus from the start on openness. Objects placed in
class hierarchies and concrete systems should not be bound there, as the hierarchies and
the systems may change while the objects shall persist.

If system requirements cause too much tension on an object, the results of modeling it
will most likely be unsatisfying, leading to either overloaded or uncomplete models.

COA provides means to relax this tension, without disregarding the various requirements.
The equipment with rich information in a highly generic fashion enables COA objects to
react flexible and adaptable to their environment.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 3

2 Overview

Section ?? (INTRODUCTION TO COA) starts with a short recall of some properties of
classes and their instances (section ??, INHERITANCE AND ASSOCIATIONS). Then, the
COA object model is presented (section ??, THE MODEL).

Next, the different components are presented (section ??, THE COMPONENTS)): THE
Kernel (section ??), THE Accessorys (section ??7) and THE Shell (section ?7).

The Accessory section contains examples of Accessorys together with an introduction
to INHERITANCE VARIATIONS (section ??7) and DIALOG ACCESSORYs (section ?7?), while
the section about the Shell describes some basic services like Accessory MANAGEMENT
(section ??7) and COMPONENT ACCESS AND CONVERSION (section ?7). An important
service, the DYNAMIC CONVERSION (section ?7?) together with ASPECT TRANSFORMA-
TIONS (section ?7), is presented in section ?? (CONVERSION).

The following section (??), IMPLEMENTATION, is denoted to design issues: THE CLASSES
(section ??) CLASS Kernel (section ??7), CLASS Accessory (section ??7), CLASS Shell
(section ?77) and CLASS Aspect (section ?7) are described.

Finally, after mentioning SYNERGY EFFECTS (section ?7) with the CyberSpace Founda-
tion (CSF) in section ?? (COA AND CSF) and Object Oriented Views (OOV) in section
7?7 (COA AND OOV), some DRAWBACKS (section ??) should not be kept secret. But the
following section ?? (TAKING BENEFIT) shows how to take benefit, and a CONCLUSION
(section ??) is also given.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 4

3 Introduction to COA

To understand the purpose of COA, some properties of objects and their relations have to
be recalled here. The following section gives a short summary of these properties. Then,
in the next section, the model itself is presented.

3.1 Inheritance and Associations

. ([
s

Class diagram (left side) and instance (right side) of a class A.

The figure on the left side shows a small class diagram of a class A and it’s bases B — F.

The right side shows an instance of this class, which is composed of the corresponding
parts of each of these classes A through F.

Typically objects are related to various other objects, let’s assume this is the case for our
A, too. Such relations can be modelled as ”associations” between classes.

The following figure shows on the left side the class diagram extended with some associated
classes. The right figure shows A’s instance completed by instances of the new classes
and the respective links.

Class diagram with inheritance (arrows) Instance of the class with links
and asscociation relations (lines). (lines) and linked instances.

While there is much support for inheritance relations in object oriented programming
languages (OOPL’s), there is little or none for associations.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 5

Supporting associations in general is not easy. Inheritance relations have a precise mean-
ing, while an association relation only means "associated somehow”. This is, of course,
not a precise meaning.

While it is difficult to support associations in general, there are subsets of associations for
which proper support is possible. Support can be made in form of class libraries, CASE
tools and code generators.

An important subset of associations supportable are those which are similar to ”entity-
relationship” relations in database applications. Those are the ones which are ”first-class”
relations in a good design since they are on the application domains level of abstraction.

Another class of associations are those which link an object to another object, which
logically belongs very strong to the first one and serves for a special purpose as a kind of
accessory to it.

This second class of associations and accessories is what COA deals with.

3.2 The Model

Shell

The Shell/Kernel/Environment Model.

The purpose of COA is to manage and support dynamic accessories of objects. It describes
objects with dynamically created and managed components and how to access these
components under various aspects.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 6

The COA object model describes objects as being composed of three components: Shell,
Kernel and Environment.

The Kernel mostly resembles what a tradi-
tional class instance is, but is more pure in
that it is restricted to the object essentials:
persistance relevant data to ensure the ob-
‘ jects identity as well as a primitve but com-
plete set of methods to allow manipulation.
Methods and data are as far as possible sub-

ject independent. The Kernel represents the
identity of the object.

The Environment is composed of Acces-
sories. This includes all kinds of objects
which are related very close to the Kernel
and do not have their own identity on the
same level of abstraction. They are not sta-
tically bound to the Kernel, but form a dy-
namic and therefore adaptable and felizble
completion of it. This does not include ob-
jects which are part-of the central object on
an abstract design level. Accessorys are of-
ten aspect dependend.

The Shell is a hull around the Kernel and
the Accessorys. It manages and integrates
the inner components and provides sophisti-
cated access to them under various aspects.
It serves as a uniform interface to different
kinds of objects, extending the functionali-
ties provided by ”the” root object found in
many multi purpose class hierarchies.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 7

4 The Components

4.1 The Kernel

The Kernel

e is a kind of pure traditional object, focussing on the essentials that make up the
objects identity.

e contains persistance relevant data, i.e. data absolute necessary to be preserved.

e methods are primitve, but nevertheless complete in that they allow all necessary
manipulations of the object’s data.

No comfortable functions or combined methods are contained, no debugging or testing
aids, no ”print-me” or ”store-me” methods, no statistic or otherwise administrative data,
neither are Kernels derived from a class providing all these features, thus implicitly
integrating them.

All these elaborated features are stripped from the Kernel and transferred into Accessorys.
Some of these Accessorys will therefore need intensive access to the Kernels (private)
data and have to be modeled as "friends”.

This is not a violation of object oriented principles, as these classes are considered as a
dynamic extension of the Kernel class with no own identity and no further purpose than
this extension. The ”encapsulation boundary” of the object is extended dynamically to
these extensions.

From a logical point of view, these dynamic extensions are associated with the Kernel
with special kinds of is-a relations. Examples and further explanations are given in the
next chapter.

The separation of these parts from the Kernel allows the creation of objects which are
more flexible, more oeconomic and performant. A clearer design can be achieved using
the additional structure introduced by this separation.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 8

4.2 The Accessorys

L r

>

Currently the Accessorys can be devided in two categories. The first category contains
objects whose classes are related in a is-a kind to the Kernels class. The second category
contains classes like the dialog classes from the CSF, Presentation and Manipulator.
These two categroies are not necessarily all nor do they assert to be complete.

4.2.1 Inheritance Variations

The classical inheritance relation says that all in-
stances of a derived class D belong also to the
base class B: a D is a B, with all consequences.
This allows classifying common object properties
by building base classes.

Objects may belong to more than one class. This
is called multiple inheritance. Examining them ex-
haustively leads to the discovery that they may
belong to really many classes.

ISA

Too many to be modeled, otherwise the model is
neither surveyable nor maintainable.

A solution to this problem is to focus on the es-
sential properties with respect to the application
to build. The model has to be restricted to these
properties. This approach has one great disadvan-
tage: objects modeled under a certain aspect are
not easy to reuse in or to port to different environ-
ments, which is an important need.

But there is another solution: examining the different inheritance relations, an important
observation can be made:

not all base classes are needed all the time and by everyone.

On the contrary: at a given point of time a user of a class only needs a very small subset
of all base classes.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 9

These variations of inheritance are shown in the following figure.

Variations of Inheritance

Two may-be-a relations are shown. The first one is a

is-for-me-a relation: D belongs only for me to B, not
for everybody. The other one is a is-for-a-time-a

IsForMeA relation, which can have two forms, depending on IsForATimeA

which class is temporary: a temporary B provides a

temporarily needed access type to D, a view; a tem-

porary D represents a role an object of B can take on.

Thus, by considering only certain well and explicit defined subsets of base classes and
managing them dynamically, all base class requirements can be satisfied in a surveyable
manner.

In COA, these temporary or aspect dependend classes are modeled as Accessorys. They
are created on demand with the neccessary access privileges to the Kernel.

It should be noted, that these dynamic base or derived classes do not represent objects
with their own identity.

4.2.2 Dialog Accessorys

In OOD models or OO programs a special category of objects can be found, which are
not first-class candidates for the design but are nevertheless somehow necessary. These
objects often deal with the presentation or manipulation of other objects.

Because these objects have a more technical character, but are too important to be hidden
on a lower level, it suggests itself to model them as Accessorys. In CAP objects dealing
with presentation and manipulation are modeled within the CSF as the dialog classes
Presentation and Manipulator.

For further details see the CAP document on dialog classes.

4.3 The Shell

Finally, the COA object is completed with a Shell, integrating the Kernel and the
Accessorys and providing an intelligent interface to these components.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 10

The Shell can be compared to "root” classes (named like ”The Object”) found in many
multi purpose class libraries, which serve similar functionalities.

Such base classes and the respective relations are ”correct”, as each object is-in-fact-an
(OOPL) object, but clearly on a very different level of abstraction than the application
domain, where OOPL-objects are rarely found.

Independently of the correctness of this ”one base class approach” and it’s usefulness, it
loads the burdon of many methods, data and features to each object. This load can be
reduced by providing the services dynamically.

4.3.1 Accessory Management

The first task the Shell performs is to manage the Accessorys internally. This includes
services like maintaining lists of created Accessorys, retrieving them if they are needed
again, cooparate with a garbage collector and so on.

These management tasks are specific to the kind of Accessorys available for an object.

4.3.2 Component Access and Conversion

The other task, which is conceptually more interesting, is to provide access to the compo-
nents in an intelligent manner. That means having a standardised way of access, which
can, first of all, be used very easy and, if necessary, extended to a very sophisticated level
of communication to specify what is needed.

This prepares objects for the usage in open environments. Two kinds of access can be
distinguished.

e The first one is access to Accessorys, where the original object is still needed. An
example are the dialog classes: access to a Presentation of an object, while, clearly,
the original object can still be needed.

e The second kind of access is to dynamic base classes, as metioned in section ?7. This
kind of access resembles a conversion, where another view of the object is needed
and the old one is no longer used.

An example for the first kind of access is given in section ?7. The conversion-like access
is described in more detail in the following section.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 11

4.3.2.1 Conversion

Conversio& O
P o3 25

Conversion is used to make the form of an object appropriate.

Consider the C++features related to conversion, ignoring for this time the difference
between conversion and cast:

e First, as each derived object of a class D is-an object of the base B, references to
D’s are converted automatically to references to B’s where needed.

e (Classes can provide explicit conversion-functions, which are used automatically in
some situations.

e The same holds for conversion by constructor, where a new object is created based
on a given one.

e [f this is not sufficient, the programmer can use explicit conversion, if he knows
what he is doing.

e dynamic_cast< >! can be used to convert to a derived class with a safety check.

All these features are often used to convert a given object into a form which is more
appropriate for the task to be performed with it.

Though these features are evolving and getting more flexible, some common diffculties
can be observed: each step of a conversion has to be specified precisely on a low level,
probably involving some checks, and the link between source and target of the conversion
has to be managed.

An approach to solve these diffculties is dynamic conversion.

! This feature is not yet available but shall be included in future versions of C++

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 12

4.3.2.1.1 Dynamic Conversion

Dynamic conversion is a mechanism unifying the above mechanisms and providing a
flexible conversion interface, which allows to specify the target on a more declarative
level, relying on the power of object oriented abstractions.

The idea is simply to have an interface to an object which allows to specify a target
class and some additional information to perform the conversion. The kind of conversion
internally performed is completely hidden from the requester, and he doesn’t have to care
about destruction and similar aspects concerning the source object.

The Shell is a good anchor for this conversion mechanism, since it is the first address of
a COA object to request a view from.

4.3.2.1.2 Aspect Transformation

An object can be viewed under different aspects,
leading to different views of this object.

To charactarize the points of view one can take on and to capture this information the
concept of an aspect is introduced. An Aspects is a (technical) object, which carrys
information describing points of view on a more or less abstract level.

Aspects are used as ”parameter objects” for the dynamic conversion mechanism previ-
ously described.

As an example the dialog classes can serve again. Consider a request to an object to
provide a graphical presentation of itself. There are many ways of giving such a graphical
presentation: a technician may want to have a CAD figure showing the components and
their states, while the manager would prefer a graphic showing the costs and the amount
of work saved. Obviously there are two aspects: a technical and a financial one.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 13

5 Implementation

5.1 The Classes

5.1.1 Class Kernel

The class Kernel exists mainly to capture the concept of a kernel. There are few or no
functionalities associated with this class, since Kernels are reduced to the essentials of
an object, all more general services are moved to the Accessorys.

One service, a Kernel can provide, is to maintain a link to the associated Shell object,
which is able to satisfy requests of many kinds.

It is possible, that, e.g. for efficiency reasons, the kernel of a COA object is not modeled
as an instance of class Kernel, but as an object completely determined by the application
domains requirements. Then, it is of course not possible to access the Shell from the
kernel, but the other direction is still possible.

5.1.2 Class Accessory

The same as for the Kernel holds for Accessorys. If the various accessories are modeled
as instances of class Accessory, it is mostly for access purposes. Of course, one can
e.g. put all Accessorys and the Kernel in a linked list to retrieve them. But these are
implementation issues. Most important on the conceptual level is access to the Shell,
since it is the object providing all the further services.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 1)

5.1.3 Class Shell

Since the Kernel and the Accessorys have nearly nothing to do, someone else will: the
Shell.

The Shell serves as a base class for various specialised kinds of shells and other services.
It’s main task is to accept requests of many kinds and to route them to some instance in
the COA object which is able to satisfy the request.

Currently there are the following services defined. The list is not complete, it only contains
sufficiently abstract services discovered so far.

Dynamic Converter
This service performs dynamic conversions as described in section ?7. It accepts
conversion requests and returns the respective results.

Dialog Service
The dialog service resembles the dynamic conversion service, since also requested
classes are retrieved. But dialog classes (Presentation and Manipulator) are in-
tended to be used by a human, while "normal” classes are made for algorithms.

Structure Service
Many objects have an internal structure. To access their components, it may be
useful to have a general mechanism available. It is at least useful for humans, to
"have a look” into the object.

Adaptation Service
This service allows objects to adapt themselves to a given environment. This is a
feature which is most useful in conjunction with the space classes of the CSF, see
section ?77.

All these services do not necessarily have to be linked to the respective object. It is
possible, that an object does not provide them. The COA structure defines a base to link
such services to, but it does not require each object to provide them all. Most likely these
services will be defined once and used by many objects, which specialise the features if
necessary.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 15

5.1.4 Class Aspect

Aspects are an abstract description of the relation subject—object (viewer—viewed thing).
They allow to capture the relevant information necessary to create a view.

Aspects are related to the semantics of a view, therefore it is not easy to classify them.
The full comfort one may want to have will need more research and development efforts,
but as a first step they provide an anchor to connect such information to. Some common
aspects will likely be not too difficult to define.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 16

6 Synergy Effects

COA is designed to supply objects with flexibility, adaptivity and dynamics. These pro-
perties are useful by themselves. Clearly, an environment that can make use of them will
intensify the benefits.

The CyberSpace Foundation Classes (CSF) and Object Oriented Views (OOV) are designed
to work with COA and partly rely on COA objects.

Some examples of the interaction between these components of CAP will be given here.

6.1 COA and CSF

The first example concerns the interaction between COA and CSF. More precisely, the
space classes and the dialog classes are mentioned.

6.1.1 Space Classes

Since COA objects are able to change their appearance and they are prepared to be viewed
under different aspects, they are able to travel through the CyberSpace and adopt to their
respective environment. This can be done automatically using Areas and Gates.

For more information on these classes see [?].

6.1.2 Dialog Classes

An important type of Accessory are the dialog classes Presentation and Manipulator.
These classes represent the interface between humans and an object.

A COA object provides the necessary information in a generic fashion, to allow the con-
struction of nearly arbitrary instantiations of such interfaces.

This includes the provision of components or the generation of complete GUI’s, documents
and reports, integration of information in hierarchic information systems, simple text
interfaces etc.

For more information on these classes see [?].

6.2 COA and OQV

The second example illustrates the interplay between COA and OOV.

Object Oriented Views allow the creation of subject oriented class models, which represent
a "personal” view on a complex system. The system needs not to be described by only
one big class model, representing a compromise of the different views.

To preserve object identity and to provide different interfaces to the objects as needed
by the different views, COA objects are useful to provide the necessary flexibility. COA

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 17

objects thus act as the "glue” between the different views.
For details on OOVs see [?].

7 Drawbacks

A lot of the features presented in this document are of course features one can imagine to
be integrated in future OOPL’s. Since the approach choosen here is to use a class library,
the integration with the programming language used is not given to an extent as it is
desirable.

An approach to solve this problem is to use code generators and design tools. There are
lots of tasks a code generator can do, not only improving the integration of these features.

Ideally, it creates, given on a short description of the Kernel, a complete COA object
with a rich set of default functionalities. These can than be modified in more detail, if
necessary.

A special and more fundamental problem should be metioned here. This problem is related
to the extraction of features from the Kernel object into dynamic accessory objects.

These accessory objects have to be bound to the kernel somehow. Ideally, as shown in the
following figure, this would be performed using a ”that-pointer”, linking the two objects
together as a form of realising an inheritance relationship.

The term ”that-pointer” is choosen to resemble the ”this-pointer” in C++ objects.

An instance of a class D The same object with a
with a base class B. dynamic bound instance of B.

The problem is, that between objects linked this way there is primarily no longer any
support of object oriented features like dynamic binding (polymorphism), being in a
class’s scope or privileged access. 2

As a workaround for this a precompiler can serve. Alternatively, a code generator can
be able to resolve the relevant scoping problems. The most difficult task is to resolve
dynamic binding between the distinct objects.

2Providing this form of linkage is not an easy task, neither on the semantic level of the programming
language nor on the implementaion level for compiler builders.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 18

8 Taking Benefit

The COA architecture is designed to introduce flexibility and dynamics into objects. This
can be used with profit for several purposes:

Saving Work
COA objects can save work, since a lot of effort for managing and equipping objects
has to be done only once within this architecture. The generation of the necessary
equipment can be automated to some extend.

Resolving Design Conflicts
Providing more and especially dynamic instruments for structuring objects COA can
help to resolve design conflicts without paying the price of managing encapsulated
behaviour. Systems can be broken down in even smaller pieces, one can focus on
and survey.

Adaptive Objects
COA objects are provided with abilities for adapting themselves to different environ-
ments, since the information is available in a generic fashion. Also they can adopt
to different requirements in the same environment, depending on the availability of
services and resources.

Oeconomic Resource Management
Not every feature a COA object may need has to be available at any time but can
be created dynamically on demand. Used for many objects in a system, this can
save noticeable amounts of system resources.

Supporting Portability
Since COA objects are designed to meet new requirements, they are not bound as
strong to a given class model as ordinary objects are. The possibility to embed
them in different class models is part of the concept, and not a problem arising
when protability is requested afterwards.

Cooperativity
COA objects do not only allow the existence of other components, such as class
libraries, it is a central goal of COA to support the coexistence with them. Since
there are primarily no requirements on Kernels, each instance of any arbitrary class
can serve as a Kernel.

The CyberSpace Architecture Project - Document CAP-10/95-COA - page 19

9 Conclusion

The CyberSpace Object Architecture, based on standard objects and being a straightfor-
ward extension of them, can help to meet the requirements of todays complex and open
systems.

COA objects are flexible, adaptive, and prepared for porting. Using the architecture can
save work, resolv design conflicts and allow oeconomic management of resources.

