
The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 1

CAP

The CyberSpa
e Ar
hite
ture Proje
t





1994,95 by Andreas Leue

The CyberSpa
e Obje
t Ar
hite
ture

Building adaptable and ri
h equipped obje
ts

This paper des
ribes the CyberSpa
e Obje
t Ar
hite
ture (COA), whi
h des
ribes a model

for obje
ts designed to meet the requirements given by todays 
omplex and open systems

and environments. The model is based on the obje
t model of 
urrent obje
t oriented

te
hniques used in design and programming. It does not only extend this model, thereby

introdu
ing degrees of freedom between design and implementation, but also �ts

seemlessly into it, making integration of COA obje
ts easy.

The paper also shows the relation between COA, the CyberSpa
e Foundation (CSF) and

obje
t oriented views (OOV) and the synergeti
 e�e
ts a
hieved.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 2

This pi
ture illustrates the ar
hite
ture of a COA obje
t.

It's Shell (blue) en
apsulates the Kernel (red) and the

A

essorys (violet) surrounding the Kernel.

1 Introdu
tion

Why introdu
ing another obje
t model?

The COA obje
t model is not a new model, but a straightforward extension and improve-

ment of the 
ommon obje
t model. It is based on and made of ordinary obje
ts, and

COA obje
ts just look like these. COA is an obje
t ar
hite
ture, providing servi
es and a

framework for building sophisti
ated obje
ts.

COA obje
ts are dseigned to meet the requirements given by todays 
omplex and open

systems. The 
on
ept of COA is to fo
us from the start on openness. Obje
ts pla
ed in


lass hierar
hies and 
on
rete systems should not be bound there, as the hierar
hies and

the systems may 
hange while the obje
ts shall persist.

If system requirements 
ause too mu
h tension on an obje
t, the results of modeling it

will most likely be unsatisfying, leading to either overloaded or un
omplete models.

COA provides means to relax this tension, without disregarding the various requirements.

The equipment with ri
h information in a highly generi
 fashion enables COA obje
ts to

rea
t 
exible and adaptable to their environment.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 3

2 Overview

Se
tion ?? (Introdu
tion to COA) starts with a short re
all of some properties of


lasses and their instan
es (se
tion ??, Inheritan
e and Asso
iations). Then, the

COA obje
t model is presented (se
tion ??, The Model).

Next, the di�erent 
omponents are presented (se
tion ??, The Components)): The

Kernel (se
tion ??), The A

essorys (se
tion ??) and The Shell (se
tion ??).

The A

essory se
tion 
ontains examples of A

essorys together with an introdu
tion

to Inheritan
e Variations (se
tion ??) and Dialog A

essorys (se
tion ??), while

the se
tion about the Shell des
ribes some basi
 servi
es like A

essory Management

(se
tion ??) and Component A

ess and Conversion (se
tion ??). An important

servi
e, the Dynami
 Conversion (se
tion ??) together with Aspe
t Transforma-

tions (se
tion ??), is presented in se
tion ?? (Conversion).

The following se
tion (??), Implementation, is denoted to design issues: The Classes

(se
tion ??) Class Kernel (se
tion ??), Class A

essory (se
tion ??), Class Shell

(se
tion ??) and Class Aspe
t (se
tion ??) are des
ribed.

Finally, after mentioning Synergy Effe
ts (se
tion ??) with the CyberSpa
e Founda-

tion (CSF) in se
tion ?? (COA and CSF) and Obje
t Oriented Views (OOV) in se
tion

?? (COA and OOV), some Drawba
ks (se
tion ??) should not be kept se
ret. But the

following se
tion ?? (Taking Benefit) shows how to take bene�t, and a Con
lusion

(se
tion ??) is also given.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 4

3 Introdu
tion to COA

To understand the purpose of COA, some properties of obje
ts and their relations have to

be re
alled here. The following se
tion gives a short summary of these properties. Then,

in the next se
tion, the model itself is presented.

3.1 Inheritan
e and Asso
iations

A

B E

FDC

A

BC D

E
F

Class diagram (left side) and instan
e (right side) of a 
lass A.

The �gure on the left side shows a small 
lass diagram of a 
lass A and it's bases B { F.

The right side shows an instan
e of this 
lass, whi
h is 
omposed of the 
orresponding

parts of ea
h of these 
lasses A through F.

Typi
ally obje
ts are related to various other obje
ts, let's assume this is the 
ase for our

A, too. Su
h relations 
an be modelled as "asso
iations" between 
lasses.

The following �gure shows on the left side the 
lass diagram extended with some asso
iated


lasses. The right �gure shows A's instan
e 
ompleted by instan
es of the new 
lasses

and the respe
tive links.

Class diagram with inheritan
e (arrows)

and ass
o
iation relations (lines).

Instan
e of the 
lass with links

(lines) and linked instan
es.

While there is mu
h support for inheritan
e relations in obje
t oriented programming

languages (OOPL's), there is little or none for asso
iations.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 5

Supporting asso
iations in general is not easy. Inheritan
e relations have a pre
ise mean-

ing, while an asso
iation relation only means "asso
iated somehow". This is, of 
ourse,

not a pre
ise meaning.

While it is diÆ
ult to support asso
iations in general, there are subsets of asso
iations for

whi
h proper support is possible. Support 
an be made in form of 
lass libraries, CASE

tools and 
ode generators.

An important subset of asso
iations supportable are those whi
h are similar to "entity-

relationship" relations in database appli
ations. Those are the ones whi
h are "�rst-
lass"

relations in a good design sin
e they are on the appli
ation domains level of abstra
tion.

Another 
lass of asso
iations are those whi
h link an obje
t to another obje
t, whi
h

logi
ally belongs very strong to the �rst one and serves for a spe
ial purpose as a kind of

a

essory to it.

This se
ond 
lass of asso
iations and a

essories is what COA deals with.

3.2 The Model

Kernel ron-

ment

Envi-

Shell

The Shell/Kernel/Environment Model.

The purpose of COA is to manage and support dynami
 a

essories of obje
ts. It des
ribes

obje
ts with dynami
ally 
reated and managed 
omponents and how to a

ess these


omponents under various aspe
ts.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 6

The COA obje
t model des
ribes obje
ts as being 
omposed of three 
omponents: Shell,

Kernel and Environment.

The Kernel mostly resembles what a tradi-

tional 
lass instan
e is, but is more pure in

that it is restri
ted to the obje
t essentials:

persistan
e relevant data to ensure the ob-

je
ts identity as well as a primitve but 
om-

plete set of methods to allow manipulation.

Methods and data are as far as possible sub-

je
t independent. The Kernel represents the

identity of the obje
t.

The Environment is 
omposed of A

es-

sories. This in
ludes all kinds of obje
ts

whi
h are related very 
lose to the Kernel

and do not have their own identity on the

same level of abstra
tion. They are not sta-

ti
ally bound to the Kernel, but form a dy-

nami
 and therefore adaptable and felixble


ompletion of it. This does not in
lude ob-

je
ts whi
h are part-of the 
entral obje
t on

an abstra
t design level. A

essorys are of-

ten aspe
t dependend.

The Shell is a hull around the Kernel and

the A

essorys. It manages and integrates

the inner 
omponents and provides sophisti-


ated a

ess to them under various aspe
ts.

It serves as a uniform interfa
e to di�erent

kinds of obje
ts, extending the fun
tionali-

ties provided by "the" root obje
t found in

many multi purpose 
lass hierar
hies.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 7

4 The Components

4.1 The Kernel

The Kernel

� is a kind of pure traditional obje
t, fo
ussing on the essentials that make up the

obje
ts identity.

� 
ontains persistan
e relevant data, i.e. data absolute ne
essary to be preserved.

� methods are primitve, but nevertheless 
omplete in that they allow all ne
essary

manipulations of the obje
t's data.

No 
omfortable fun
tions or 
ombined methods are 
ontained, no debugging or testing

aids, no "print-me" or "store-me" methods, no statisti
 or otherwise administrative data,

neither are Kernels derived from a 
lass providing all these features, thus impli
itly

integrating them.

All these elaborated features are stripped from the Kernel and transferred into A

essorys.

Some of these A

essorys will therefore need intensive a

ess to the Kernels (private)

data and have to be modeled as "friends".

This is not a violation of obje
t oriented prin
iples, as these 
lasses are 
onsidered as a

dynami
 extension of the Kernel 
lass with no own identity and no further purpose than

this extension. The "en
apsulation boundary" of the obje
t is extended dynami
ally to

these extensions.

From a logi
al point of view, these dynami
 extensions are asso
iated with the Kernel

with spe
ial kinds of is-a relations. Examples and further explanations are given in the

next 
hapter.

The separation of these parts from the Kernel allows the 
reation of obje
ts whi
h are

more 
exible, more oe
onomi
 and performant. A 
learer design 
an be a
hieved using

the additional stru
ture introdu
ed by this separation.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 8

4.2 The A

essorys

Currently the A

essorys 
an be devided in two 
ategories. The �rst 
ategory 
ontains

obje
ts whose 
lasses are related in a is-a kind to the Kernels 
lass. The se
ond 
ategory


ontains 
lasses like the dialog 
lasses from the CSF, Presentation and Manipulator.

These two 
ategroies are not ne
essarily all nor do they assert to be 
omplete.

4.2.1 Inheritan
e Variations

class B

class D

IsA

The 
lassi
al inheritan
e relation says that all in-

stan
es of a derived 
lass D belong also to the

base 
lass B: a D is a B, with all 
onsequen
es.

This allows 
lassifying 
ommon obje
t properties

by building base 
lasses.

Obje
ts may belong to more than one 
lass. This

is 
alled multiple inheritan
e. Examining them ex-

haustively leads to the dis
overy that they may

belong to really many 
lasses.

Too many to be modeled, otherwise the model is

neither surveyable nor maintainable.

A solution to this problem is to fo
us on the es-

sential properties with respe
t to the appli
ation

to build. The model has to be restri
ted to these

properties. This approa
h has one great disadvan-

tage: obje
ts modeled under a 
ertain aspe
t are

not easy to reuse in or to port to di�erent environ-

ments, whi
h is an important need.

class B1

class B2class B8

class B7 class B3

class B4

class B5

class B6

class D

IsALot

But there is another solution: examining the di�erent inheritan
e relations, an important

observation 
an be made:

not all base 
lasses are needed all the time and by everyone.

On the 
ontrary: at a given point of time a user of a 
lass only needs a very small subset

of all base 
lasses.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 9

These variations of inheritan
e are shown in the following �gure.

class B

class D

IsForMeA

Variations of Inheritan
e

Two may-be-a relations are shown. The �rst one is a

is-for-me-a relation: D belongs only for me to B, not

for everybody. The other one is a is-for-a-time-a

relation, whi
h 
an have two forms, depending on

whi
h 
lass is temporary: a temporary B provides a

temporarily needed a

ess type to D, a view; a tem-

porary D represents a role an obje
t of B 
an take on.

class D

class B

IsForATimeA

Thus, by 
onsidering only 
ertain well and expli
it de�ned subsets of base 
lasses and

managing them dynami
ally, all base 
lass requirements 
an be satis�ed in a surveyable

manner.

In COA, these temporary or aspe
t dependend 
lasses are modeled as A

essorys. They

are 
reated on demand with the ne

essary a

ess privileges to the Kernel.

It should be noted, that these dynami
 base or derived 
lasses do not represent obje
ts

with their own identity.

4.2.2 Dialog A

essorys

In OOD models or OO programs a spe
ial 
ategory of obje
ts 
an be found, whi
h are

not �rst-
lass 
andidates for the design but are nevertheless somehow ne
essary. These

obje
ts often deal with the presentation or manipulation of other obje
ts.

Be
ause these obje
ts have a more te
hni
al 
hara
ter, but are too important to be hidden

on a lower level, it suggests itself to model them as A

essorys. In CAP obje
ts dealing

with presentation and manipulation are modeled within the CSF as the dialog 
lasses

Presentation and Manipulator.

For further details see the CAP do
ument on dialog 
lasses.

4.3 The Shell

Finally, the COA obje
t is 
ompleted with a Shell, integrating the Kernel and the

A

essorys and providing an intelligent interfa
e to these 
omponents.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 10

The Shell 
an be 
ompared to "root" 
lasses (named like "The Obje
t") found in many

multi purpose 
lass libraries, whi
h serve similar fun
tionalities.

Su
h base 
lasses and the respe
tive relations are "
orre
t", as ea
h obje
t is-in-fa
t-an

(OOPL) obje
t, but 
learly on a very di�erent level of abstra
tion than the appli
ation

domain, where OOPL-obje
ts are rarely found.

Independently of the 
orre
tness of this "one base 
lass approa
h" and it's usefulness, it

loads the burdon of many methods, data and features to ea
h obje
t. This load 
an be

redu
ed by providing the servi
es dynami
ally.

4.3.1 A

essory Management

The �rst task the Shell performs is to manage the A

essorys internally. This in
ludes

servi
es like maintaining lists of 
reated A

essorys, retrieving them if they are needed

again, 
ooparate with a garbage 
olle
tor and so on.

These management tasks are spe
i�
 to the kind of A

essorys available for an obje
t.

4.3.2 Component A

ess and Conversion

The other task, whi
h is 
on
eptually more interesting, is to provide a

ess to the 
ompo-

nents in an intelligent manner. That means having a standardised way of a

ess, whi
h


an, �rst of all, be used very easy and, if ne
essary, extended to a very sophisti
ated level

of 
ommuni
ation to spe
ify what is needed.

This prepares obje
ts for the usage in open environments. Two kinds of a

ess 
an be

distinguished.

� The �rst one is a

ess to A

essorys, where the original obje
t is still needed. An

example are the dialog 
lasses: a

ess to a Presentation of an obje
t, while, 
learly,

the original obje
t 
an still be needed.

� The se
ond kind of a

ess is to dynami
 base 
lasses, as metioned in se
tion ??. This

kind of a

ess resembles a 
onversion, where another view of the obje
t is needed

and the old one is no longer used.

An example for the �rst kind of a

ess is given in se
tion ??. The 
onversion-like a

ess

is des
ribed in more detail in the following se
tion.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 11

4.3.2.1 Conversion

Conversion

Conversion is used to make the form of an obje
t appropriate.

Consider the C

++

features related to 
onversion, ignoring for this time the di�eren
e

between 
onversion and 
ast:

� First, as ea
h derived obje
t of a 
lass D is-an obje
t of the base B, referen
es to

D's are 
onverted automati
ally to referen
es to B's where needed.

� Classes 
an provide expli
it 
onversion-fun
tions, whi
h are used automati
ally in

some situations.

� The same holds for 
onversion by 
onstru
tor, where a new obje
t is 
reated based

on a given one.

� If this is not suÆ
ient, the programmer 
an use expli
it 
onversion, if he knows

what he is doing.

� dynami
_
ast< >

1


an be used to 
onvert to a derived 
lass with a safety 
he
k.

All these features are often used to 
onvert a given obje
t into a form whi
h is more

appropriate for the task to be performed with it.

Though these features are evolving and getting more 
exible, some 
ommon di�
ulties


an be observed: ea
h step of a 
onversion has to be spe
i�ed pre
isely on a low level,

probably involving some 
he
ks, and the link between sour
e and target of the 
onversion

has to be managed.

An approa
h to solve these di�
ulties is dynami
 
onversion.

1

This feature is not yet available but shall be in
luded in future versions of C

++



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 12

4.3.2.1.1 Dynami
 Conversion

Dynami
 
onversion is a me
hanism unifying the above me
hanisms and providing a


exible 
onversion interfa
e, whi
h allows to spe
ify the target on a more de
larative

level, relying on the power of obje
t oriented abstra
tions.

The idea is simply to have an interfa
e to an obje
t whi
h allows to spe
ify a target


lass and some additional information to perform the 
onversion. The kind of 
onversion

internally performed is 
ompletely hidden from the requester, and he doesn't have to 
are

about destru
tion and similar aspe
ts 
on
erning the sour
e obje
t.

The Shell is a good an
hor for this 
onversion me
hanism, sin
e it is the �rst address of

a COA obje
t to request a view from.

4.3.2.1.2 Aspe
t Transformation

An obje
t 
an be viewed under di�erent aspe
ts,

leading to di�erent views of this obje
t.

To 
hara
tarize the points of view one 
an take on and to 
apture this information the


on
ept of an aspe
t is introdu
ed. An Aspe
ts is a (te
hni
al) obje
t, whi
h 
arrys

information des
ribing points of view on a more or less abstra
t level.

Aspe
ts are used as "parameter obje
ts" for the dynami
 
onversion me
hanism previ-

ously des
ribed.

As an example the dialog 
lasses 
an serve again. Consider a request to an obje
t to

provide a graphi
al presentation of itself. There are many ways of giving su
h a graphi
al

presentation: a te
hni
ian may want to have a CAD �gure showing the 
omponents and

their states, while the manager would prefer a graphi
 showing the 
osts and the amount

of work saved. Obviously there are two aspe
ts: a te
hni
al and a �nan
ial one.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 13

5 Implementation

5.1 The Classes

5.1.1 Class Kernel

class
Kernel

The 
lass Kernel exists mainly to 
apture the 
on
ept of a kernel. There are few or no

fun
tionalities asso
iated with this 
lass, sin
e Kernels are redu
ed to the essentials of

an obje
t, all more general servi
es are moved to the A

essorys.

One servi
e, a Kernel 
an provide, is to maintain a link to the asso
iated Shell obje
t,

whi
h is able to satisfy requests of many kinds.

It is possible, that, e.g. for eÆ
ien
y reasons, the kernel of a COA obje
t is not modeled

as an instan
e of 
lass Kernel, but as an obje
t 
ompletely determined by the appli
ation

domains requirements. Then, it is of 
ourse not possible to a

ess the Shell from the

kernel, but the other dire
tion is still possible.

5.1.2 Class A

essory

class
Accessory

The same as for the Kernel holds for A

essorys. If the various a

essories are modeled

as instan
es of 
lass A

essory, it is mostly for a

ess purposes. Of 
ourse, one 
an

e.g. put all A

essorys and the Kernel in a linked list to retrieve them. But these are

implementation issues. Most important on the 
on
eptual level is a

ess to the Shell,

sin
e it is the obje
t providing all the further servi
es.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 14

5.1.3 Class Shell

class
Shell

Sin
e the Kernel and the A

essorys have nearly nothing to do, someone else will: the

Shell.

The Shell serves as a base 
lass for various spe
ialised kinds of shells and other servi
es.

It's main task is to a

ept requests of many kinds and to route them to some instan
e in

the COA obje
t whi
h is able to satisfy the request.

Currently there are the following servi
es de�ned. The list is not 
omplete, it only 
ontains

suÆ
iently abstra
t servi
es dis
overed so far.

Dynami
 Converter

This servi
e performs dynami
 
onversions as des
ribed in se
tion ??. It a

epts


onversion requests and returns the respe
tive results.

Dialog Servi
e

The dialog servi
e resembles the dynami
 
onversion servi
e, sin
e also requested


lasses are retrieved. But dialog 
lasses (Presentation and Manipulator) are in-

tended to be used by a human, while "normal" 
lasses are made for algorithms.

Stru
ture Servi
e

Many obje
ts have an internal stru
ture. To a

ess their 
omponents, it may be

useful to have a general me
hanism available. It is at least useful for humans, to

"have a look" into the obje
t.

Adaptation Servi
e

This servi
e allows obje
ts to adapt themselves to a given environment. This is a

feature whi
h is most useful in 
onjun
tion with the spa
e 
lasses of the CSF, see

se
tion ??.

All these servi
es do not ne
essarily have to be linked to the respe
tive obje
t. It is

possible, that an obje
t does not provide them. The COA stru
ture de�nes a base to link

su
h servi
es to, but it does not require ea
h obje
t to provide them all. Most likely these

servi
es will be de�ned on
e and used by many obje
ts, whi
h spe
ialise the features if

ne
essary.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 15

5.1.4 Class Aspe
t

class
Aspect

Aspe
ts are an abstra
t des
ription of the relation subje
t{obje
t (viewer{viewed thing).

They allow to 
apture the relevant information ne
essary to 
reate a view.

Aspe
ts are related to the semanti
s of a view, therefore it is not easy to 
lassify them.

The full 
omfort one may want to have will need more resear
h and development e�orts,

but as a �rst step they provide an an
hor to 
onne
t su
h information to. Some 
ommon

aspe
ts will likely be not too diÆ
ult to de�ne.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 16

6 Synergy E�e
ts

COA is designed to supply obje
ts with 
exibility, adaptivity and dynami
s. These pro-

perties are useful by themselves. Clearly, an environment that 
an make use of them will

intensify the bene�ts.

The CyberSpa
e Foundation Classes (CSF) and Obje
t Oriented Views (OOV) are designed

to work with COA and partly rely on COA obje
ts.

Some examples of the intera
tion between these 
omponents of CAP will be given here.

6.1 COA and CSF

The �rst example 
on
erns the intera
tion between COA and CSF. More pre
isely, the

spa
e 
lasses and the dialog 
lasses are mentioned.

6.1.1 Spa
e Classes

Sin
e COA obje
ts are able to 
hange their appearan
e and they are prepared to be viewed

under di�erent aspe
ts, they are able to travel through the CyberSpa
e and adopt to their

respe
tive environment. This 
an be done automati
ally using Areas and Gates.

For more information on these 
lasses see [?℄.

6.1.2 Dialog Classes

An important type of A

essory are the dialog 
lasses Presentation and Manipulator.

These 
lasses represent the interfa
e between humans and an obje
t.

A COA obje
t provides the ne
essary information in a generi
 fashion, to allow the 
on-

stru
tion of nearly arbitrary instantiations of su
h interfa
es.

This in
ludes the provision of 
omponents or the generation of 
omplete GUI's, do
uments

and reports, integration of information in hierar
hi
 information systems, simple text

interfa
es et
.

For more information on these 
lasses see [?℄.

6.2 COA and OOV

The se
ond example illustrates the interplay between COA and OOV.

Obje
t Oriented Views allow the 
reation of subje
t oriented 
lass models, whi
h represent

a "personal" view on a 
omplex system. The system needs not to be des
ribed by only

one big 
lass model, representing a 
ompromise of the di�erent views.

To preserve obje
t identity and to provide di�erent interfa
es to the obje
ts as needed

by the di�erent views, COA obje
ts are useful to provide the ne
essary 
exibility. COA



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 17

obje
ts thus a
t as the "glue" between the di�erent views.

For details on OOVs see [?℄.

7 Drawba
ks

A lot of the features presented in this do
ument are of 
ourse features one 
an imagine to

be integrated in future OOPL's. Sin
e the approa
h 
hoosen here is to use a 
lass library,

the integration with the programming language used is not given to an extent as it is

desirable.

An approa
h to solve this problem is to use 
ode generators and design tools. There are

lots of tasks a 
ode generator 
an do, not only improving the integration of these features.

Ideally, it 
reates, given on a short des
ription of the Kernel, a 
omplete COA obje
t

with a ri
h set of default fun
tionalities. These 
an than be modi�ed in more detail, if

ne
essary.

A spe
ial and more fundamental problem should be metioned here. This problem is related

to the extra
tion of features from the Kernel obje
t into dynami
 a

essory obje
ts.

These a

essory obje
ts have to be bound to the kernel somehow. Ideally, as shown in the

following �gure, this would be performed using a "that-pointer", linking the two obje
ts

together as a form of realising an inheritan
e relationship.

The term "that-pointer" is 
hoosen to resemble the "this-pointer" in C++ obje
ts.

B

D

that

D

B

An instan
e of a 
lass D

with a base 
lass B.

The same obje
t with a

dynami
 bound instan
e of B.

The problem is, that between obje
ts linked this way there is primarily no longer any

support of obje
t oriented features like dynami
 binding (polymorphism), being in a


lass's s
ope or privileged a

ess.

2

As a workaround for this a pre
ompiler 
an serve. Alternatively, a 
ode generator 
an

be able to resolve the relevant s
oping problems. The most diÆ
ult task is to resolve

dynami
 binding between the distin
t obje
ts.

2

Providing this form of linkage is not an easy task, neither on the semanti
 level of the programming

language nor on the implementaion level for 
ompiler builders.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 18

8 Taking Bene�t

The COA ar
hite
ture is designed to introdu
e 
exibility and dynami
s into obje
ts. This


an be used with pro�t for several purposes:

Saving Work

COA obje
ts 
an save work, sin
e a lot of e�ort for managing and equipping obje
ts

has to be done only on
e within this ar
hite
ture. The generation of the ne
essary

equipment 
an be automated to some extend.

Resolving Design Con
i
ts

Providing more and espe
ially dynami
 instruments for stru
turing obje
ts COA 
an

help to resolve design 
on
i
ts without paying the pri
e of managing en
apsulated

behaviour. Systems 
an be broken down in even smaller pie
es, one 
an fo
us on

and survey.

Adaptive Obje
ts

COA obje
ts are provided with abilities for adapting themselves to di�erent environ-

ments, sin
e the information is available in a generi
 fashion. Also they 
an adopt

to di�erent requirements in the same environment, depending on the availability of

servi
es and resour
es.

Oe
onomi
 Resour
e Management

Not every feature a COA obje
t may need has to be available at any time but 
an

be 
reated dynami
ally on demand. Used for many obje
ts in a system, this 
an

save noti
eable amounts of system resour
es.

Supporting Portability

Sin
e COA obje
ts are designed to meet new requirements, they are not bound as

strong to a given 
lass model as ordinary obje
ts are. The possibility to embed

them in di�erent 
lass models is part of the 
on
ept, and not a problem arising

when protability is requested afterwards.

Cooperativity

COA obje
ts do not only allow the existen
e of other 
omponents, su
h as 
lass

libraries, it is a 
entral goal of COA to support the 
oexisten
e with them. Sin
e

there are primarily no requirements on Kernels, ea
h instan
e of any arbitrary 
lass


an serve as a Kernel.



The CyberSpa
e Ar
hite
ture Proje
t - Do
ument CAP-10/95-COA - page 19

9 Con
lusion

The CyberSpa
e Obje
t Ar
hite
ture, based on standard obje
ts and being a straightfor-

ward extension of them, 
an help to meet the requirements of todays 
omplex and open

systems.

COA obje
ts are 
exible, adaptive, and prepared for porting. Using the ar
hite
ture 
an

save work, resolv design 
on
i
ts and allow oe
onomi
 management of resour
es.


