
The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 1

CAP

The CyberSpae Arhiteture Projet



1994,95 by Andreas Leue

The CyberSpae Objet Arhiteture

Building adaptable and rih equipped objets

This paper desribes the CyberSpae Objet Arhiteture (COA), whih desribes a model

for objets designed to meet the requirements given by todays omplex and open systems

and environments. The model is based on the objet model of urrent objet oriented

tehniques used in design and programming. It does not only extend this model, thereby

introduing degrees of freedom between design and implementation, but also �ts

seemlessly into it, making integration of COA objets easy.

The paper also shows the relation between COA, the CyberSpae Foundation (CSF) and

objet oriented views (OOV) and the synergeti e�ets ahieved.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 2

This piture illustrates the arhiteture of a COA objet.

It's Shell (blue) enapsulates the Kernel (red) and the

Aessorys (violet) surrounding the Kernel.

1 Introdution

Why introduing another objet model?

The COA objet model is not a new model, but a straightforward extension and improve-

ment of the ommon objet model. It is based on and made of ordinary objets, and

COA objets just look like these. COA is an objet arhiteture, providing servies and a

framework for building sophistiated objets.

COA objets are dseigned to meet the requirements given by todays omplex and open

systems. The onept of COA is to fous from the start on openness. Objets plaed in

lass hierarhies and onrete systems should not be bound there, as the hierarhies and

the systems may hange while the objets shall persist.

If system requirements ause too muh tension on an objet, the results of modeling it

will most likely be unsatisfying, leading to either overloaded or unomplete models.

COA provides means to relax this tension, without disregarding the various requirements.

The equipment with rih information in a highly generi fashion enables COA objets to

reat exible and adaptable to their environment.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 3

2 Overview

Setion ?? (Introdution to COA) starts with a short reall of some properties of

lasses and their instanes (setion ??, Inheritane and Assoiations). Then, the

COA objet model is presented (setion ??, The Model).

Next, the di�erent omponents are presented (setion ??, The Components)): The

Kernel (setion ??), The Aessorys (setion ??) and The Shell (setion ??).

The Aessory setion ontains examples of Aessorys together with an introdution

to Inheritane Variations (setion ??) and Dialog Aessorys (setion ??), while

the setion about the Shell desribes some basi servies like Aessory Management

(setion ??) and Component Aess and Conversion (setion ??). An important

servie, the Dynami Conversion (setion ??) together with Aspet Transforma-

tions (setion ??), is presented in setion ?? (Conversion).

The following setion (??), Implementation, is denoted to design issues: The Classes

(setion ??) Class Kernel (setion ??), Class Aessory (setion ??), Class Shell

(setion ??) and Class Aspet (setion ??) are desribed.

Finally, after mentioning Synergy Effets (setion ??) with the CyberSpae Founda-

tion (CSF) in setion ?? (COA and CSF) and Objet Oriented Views (OOV) in setion

?? (COA and OOV), some Drawbaks (setion ??) should not be kept seret. But the

following setion ?? (Taking Benefit) shows how to take bene�t, and a Conlusion

(setion ??) is also given.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 4

3 Introdution to COA

To understand the purpose of COA, some properties of objets and their relations have to

be realled here. The following setion gives a short summary of these properties. Then,

in the next setion, the model itself is presented.

3.1 Inheritane and Assoiations

A

B E

FDC

A

BC D

E
F

Class diagram (left side) and instane (right side) of a lass A.

The �gure on the left side shows a small lass diagram of a lass A and it's bases B { F.

The right side shows an instane of this lass, whih is omposed of the orresponding

parts of eah of these lasses A through F.

Typially objets are related to various other objets, let's assume this is the ase for our

A, too. Suh relations an be modelled as "assoiations" between lasses.

The following �gure shows on the left side the lass diagram extended with some assoiated

lasses. The right �gure shows A's instane ompleted by instanes of the new lasses

and the respetive links.

Class diagram with inheritane (arrows)

and assoiation relations (lines).

Instane of the lass with links

(lines) and linked instanes.

While there is muh support for inheritane relations in objet oriented programming

languages (OOPL's), there is little or none for assoiations.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 5

Supporting assoiations in general is not easy. Inheritane relations have a preise mean-

ing, while an assoiation relation only means "assoiated somehow". This is, of ourse,

not a preise meaning.

While it is diÆult to support assoiations in general, there are subsets of assoiations for

whih proper support is possible. Support an be made in form of lass libraries, CASE

tools and ode generators.

An important subset of assoiations supportable are those whih are similar to "entity-

relationship" relations in database appliations. Those are the ones whih are "�rst-lass"

relations in a good design sine they are on the appliation domains level of abstration.

Another lass of assoiations are those whih link an objet to another objet, whih

logially belongs very strong to the �rst one and serves for a speial purpose as a kind of

aessory to it.

This seond lass of assoiations and aessories is what COA deals with.

3.2 The Model

Kernel ron-

ment

Envi-

Shell

The Shell/Kernel/Environment Model.

The purpose of COA is to manage and support dynami aessories of objets. It desribes

objets with dynamially reated and managed omponents and how to aess these

omponents under various aspets.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 6

The COA objet model desribes objets as being omposed of three omponents: Shell,

Kernel and Environment.

The Kernel mostly resembles what a tradi-

tional lass instane is, but is more pure in

that it is restrited to the objet essentials:

persistane relevant data to ensure the ob-

jets identity as well as a primitve but om-

plete set of methods to allow manipulation.

Methods and data are as far as possible sub-

jet independent. The Kernel represents the

identity of the objet.

The Environment is omposed of Aes-

sories. This inludes all kinds of objets

whih are related very lose to the Kernel

and do not have their own identity on the

same level of abstration. They are not sta-

tially bound to the Kernel, but form a dy-

nami and therefore adaptable and felixble

ompletion of it. This does not inlude ob-

jets whih are part-of the entral objet on

an abstrat design level. Aessorys are of-

ten aspet dependend.

The Shell is a hull around the Kernel and

the Aessorys. It manages and integrates

the inner omponents and provides sophisti-

ated aess to them under various aspets.

It serves as a uniform interfae to di�erent

kinds of objets, extending the funtionali-

ties provided by "the" root objet found in

many multi purpose lass hierarhies.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 7

4 The Components

4.1 The Kernel

The Kernel

� is a kind of pure traditional objet, foussing on the essentials that make up the

objets identity.

� ontains persistane relevant data, i.e. data absolute neessary to be preserved.

� methods are primitve, but nevertheless omplete in that they allow all neessary

manipulations of the objet's data.

No omfortable funtions or ombined methods are ontained, no debugging or testing

aids, no "print-me" or "store-me" methods, no statisti or otherwise administrative data,

neither are Kernels derived from a lass providing all these features, thus impliitly

integrating them.

All these elaborated features are stripped from the Kernel and transferred into Aessorys.

Some of these Aessorys will therefore need intensive aess to the Kernels (private)

data and have to be modeled as "friends".

This is not a violation of objet oriented priniples, as these lasses are onsidered as a

dynami extension of the Kernel lass with no own identity and no further purpose than

this extension. The "enapsulation boundary" of the objet is extended dynamially to

these extensions.

From a logial point of view, these dynami extensions are assoiated with the Kernel

with speial kinds of is-a relations. Examples and further explanations are given in the

next hapter.

The separation of these parts from the Kernel allows the reation of objets whih are

more exible, more oeonomi and performant. A learer design an be ahieved using

the additional struture introdued by this separation.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 8

4.2 The Aessorys

Currently the Aessorys an be devided in two ategories. The �rst ategory ontains

objets whose lasses are related in a is-a kind to the Kernels lass. The seond ategory

ontains lasses like the dialog lasses from the CSF, Presentation and Manipulator.

These two ategroies are not neessarily all nor do they assert to be omplete.

4.2.1 Inheritane Variations

class B

class D

IsA

The lassial inheritane relation says that all in-

stanes of a derived lass D belong also to the

base lass B: a D is a B, with all onsequenes.

This allows lassifying ommon objet properties

by building base lasses.

Objets may belong to more than one lass. This

is alled multiple inheritane. Examining them ex-

haustively leads to the disovery that they may

belong to really many lasses.

Too many to be modeled, otherwise the model is

neither surveyable nor maintainable.

A solution to this problem is to fous on the es-

sential properties with respet to the appliation

to build. The model has to be restrited to these

properties. This approah has one great disadvan-

tage: objets modeled under a ertain aspet are

not easy to reuse in or to port to di�erent environ-

ments, whih is an important need.

class B1

class B2class B8

class B7 class B3

class B4

class B5

class B6

class D

IsALot

But there is another solution: examining the di�erent inheritane relations, an important

observation an be made:

not all base lasses are needed all the time and by everyone.

On the ontrary: at a given point of time a user of a lass only needs a very small subset

of all base lasses.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 9

These variations of inheritane are shown in the following �gure.

class B

class D

IsForMeA

Variations of Inheritane

Two may-be-a relations are shown. The �rst one is a

is-for-me-a relation: D belongs only for me to B, not

for everybody. The other one is a is-for-a-time-a

relation, whih an have two forms, depending on

whih lass is temporary: a temporary B provides a

temporarily needed aess type to D, a view; a tem-

porary D represents a role an objet of B an take on.

class D

class B

IsForATimeA

Thus, by onsidering only ertain well and expliit de�ned subsets of base lasses and

managing them dynamially, all base lass requirements an be satis�ed in a surveyable

manner.

In COA, these temporary or aspet dependend lasses are modeled as Aessorys. They

are reated on demand with the neessary aess privileges to the Kernel.

It should be noted, that these dynami base or derived lasses do not represent objets

with their own identity.

4.2.2 Dialog Aessorys

In OOD models or OO programs a speial ategory of objets an be found, whih are

not �rst-lass andidates for the design but are nevertheless somehow neessary. These

objets often deal with the presentation or manipulation of other objets.

Beause these objets have a more tehnial harater, but are too important to be hidden

on a lower level, it suggests itself to model them as Aessorys. In CAP objets dealing

with presentation and manipulation are modeled within the CSF as the dialog lasses

Presentation and Manipulator.

For further details see the CAP doument on dialog lasses.

4.3 The Shell

Finally, the COA objet is ompleted with a Shell, integrating the Kernel and the

Aessorys and providing an intelligent interfae to these omponents.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 10

The Shell an be ompared to "root" lasses (named like "The Objet") found in many

multi purpose lass libraries, whih serve similar funtionalities.

Suh base lasses and the respetive relations are "orret", as eah objet is-in-fat-an

(OOPL) objet, but learly on a very di�erent level of abstration than the appliation

domain, where OOPL-objets are rarely found.

Independently of the orretness of this "one base lass approah" and it's usefulness, it

loads the burdon of many methods, data and features to eah objet. This load an be

redued by providing the servies dynamially.

4.3.1 Aessory Management

The �rst task the Shell performs is to manage the Aessorys internally. This inludes

servies like maintaining lists of reated Aessorys, retrieving them if they are needed

again, ooparate with a garbage olletor and so on.

These management tasks are spei� to the kind of Aessorys available for an objet.

4.3.2 Component Aess and Conversion

The other task, whih is oneptually more interesting, is to provide aess to the ompo-

nents in an intelligent manner. That means having a standardised way of aess, whih

an, �rst of all, be used very easy and, if neessary, extended to a very sophistiated level

of ommuniation to speify what is needed.

This prepares objets for the usage in open environments. Two kinds of aess an be

distinguished.

� The �rst one is aess to Aessorys, where the original objet is still needed. An

example are the dialog lasses: aess to a Presentation of an objet, while, learly,

the original objet an still be needed.

� The seond kind of aess is to dynami base lasses, as metioned in setion ??. This

kind of aess resembles a onversion, where another view of the objet is needed

and the old one is no longer used.

An example for the �rst kind of aess is given in setion ??. The onversion-like aess

is desribed in more detail in the following setion.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 11

4.3.2.1 Conversion

Conversion

Conversion is used to make the form of an objet appropriate.

Consider the C

++

features related to onversion, ignoring for this time the di�erene

between onversion and ast:

� First, as eah derived objet of a lass D is-an objet of the base B, referenes to

D's are onverted automatially to referenes to B's where needed.

� Classes an provide expliit onversion-funtions, whih are used automatially in

some situations.

� The same holds for onversion by onstrutor, where a new objet is reated based

on a given one.

� If this is not suÆient, the programmer an use expliit onversion, if he knows

what he is doing.

� dynami_ast< >

1

an be used to onvert to a derived lass with a safety hek.

All these features are often used to onvert a given objet into a form whih is more

appropriate for the task to be performed with it.

Though these features are evolving and getting more exible, some ommon di�ulties

an be observed: eah step of a onversion has to be spei�ed preisely on a low level,

probably involving some heks, and the link between soure and target of the onversion

has to be managed.

An approah to solve these di�ulties is dynami onversion.

1

This feature is not yet available but shall be inluded in future versions of C

++



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 12

4.3.2.1.1 Dynami Conversion

Dynami onversion is a mehanism unifying the above mehanisms and providing a

exible onversion interfae, whih allows to speify the target on a more delarative

level, relying on the power of objet oriented abstrations.

The idea is simply to have an interfae to an objet whih allows to speify a target

lass and some additional information to perform the onversion. The kind of onversion

internally performed is ompletely hidden from the requester, and he doesn't have to are

about destrution and similar aspets onerning the soure objet.

The Shell is a good anhor for this onversion mehanism, sine it is the �rst address of

a COA objet to request a view from.

4.3.2.1.2 Aspet Transformation

An objet an be viewed under di�erent aspets,

leading to di�erent views of this objet.

To haratarize the points of view one an take on and to apture this information the

onept of an aspet is introdued. An Aspets is a (tehnial) objet, whih arrys

information desribing points of view on a more or less abstrat level.

Aspets are used as "parameter objets" for the dynami onversion mehanism previ-

ously desribed.

As an example the dialog lasses an serve again. Consider a request to an objet to

provide a graphial presentation of itself. There are many ways of giving suh a graphial

presentation: a tehniian may want to have a CAD �gure showing the omponents and

their states, while the manager would prefer a graphi showing the osts and the amount

of work saved. Obviously there are two aspets: a tehnial and a �nanial one.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 13

5 Implementation

5.1 The Classes

5.1.1 Class Kernel

class
Kernel

The lass Kernel exists mainly to apture the onept of a kernel. There are few or no

funtionalities assoiated with this lass, sine Kernels are redued to the essentials of

an objet, all more general servies are moved to the Aessorys.

One servie, a Kernel an provide, is to maintain a link to the assoiated Shell objet,

whih is able to satisfy requests of many kinds.

It is possible, that, e.g. for eÆieny reasons, the kernel of a COA objet is not modeled

as an instane of lass Kernel, but as an objet ompletely determined by the appliation

domains requirements. Then, it is of ourse not possible to aess the Shell from the

kernel, but the other diretion is still possible.

5.1.2 Class Aessory

class
Accessory

The same as for the Kernel holds for Aessorys. If the various aessories are modeled

as instanes of lass Aessory, it is mostly for aess purposes. Of ourse, one an

e.g. put all Aessorys and the Kernel in a linked list to retrieve them. But these are

implementation issues. Most important on the oneptual level is aess to the Shell,

sine it is the objet providing all the further servies.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 14

5.1.3 Class Shell

class
Shell

Sine the Kernel and the Aessorys have nearly nothing to do, someone else will: the

Shell.

The Shell serves as a base lass for various speialised kinds of shells and other servies.

It's main task is to aept requests of many kinds and to route them to some instane in

the COA objet whih is able to satisfy the request.

Currently there are the following servies de�ned. The list is not omplete, it only ontains

suÆiently abstrat servies disovered so far.

Dynami Converter

This servie performs dynami onversions as desribed in setion ??. It aepts

onversion requests and returns the respetive results.

Dialog Servie

The dialog servie resembles the dynami onversion servie, sine also requested

lasses are retrieved. But dialog lasses (Presentation and Manipulator) are in-

tended to be used by a human, while "normal" lasses are made for algorithms.

Struture Servie

Many objets have an internal struture. To aess their omponents, it may be

useful to have a general mehanism available. It is at least useful for humans, to

"have a look" into the objet.

Adaptation Servie

This servie allows objets to adapt themselves to a given environment. This is a

feature whih is most useful in onjuntion with the spae lasses of the CSF, see

setion ??.

All these servies do not neessarily have to be linked to the respetive objet. It is

possible, that an objet does not provide them. The COA struture de�nes a base to link

suh servies to, but it does not require eah objet to provide them all. Most likely these

servies will be de�ned one and used by many objets, whih speialise the features if

neessary.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 15

5.1.4 Class Aspet

class
Aspect

Aspets are an abstrat desription of the relation subjet{objet (viewer{viewed thing).

They allow to apture the relevant information neessary to reate a view.

Aspets are related to the semantis of a view, therefore it is not easy to lassify them.

The full omfort one may want to have will need more researh and development e�orts,

but as a �rst step they provide an anhor to onnet suh information to. Some ommon

aspets will likely be not too diÆult to de�ne.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 16

6 Synergy E�ets

COA is designed to supply objets with exibility, adaptivity and dynamis. These pro-

perties are useful by themselves. Clearly, an environment that an make use of them will

intensify the bene�ts.

The CyberSpae Foundation Classes (CSF) and Objet Oriented Views (OOV) are designed

to work with COA and partly rely on COA objets.

Some examples of the interation between these omponents of CAP will be given here.

6.1 COA and CSF

The �rst example onerns the interation between COA and CSF. More preisely, the

spae lasses and the dialog lasses are mentioned.

6.1.1 Spae Classes

Sine COA objets are able to hange their appearane and they are prepared to be viewed

under di�erent aspets, they are able to travel through the CyberSpae and adopt to their

respetive environment. This an be done automatially using Areas and Gates.

For more information on these lasses see [?℄.

6.1.2 Dialog Classes

An important type of Aessory are the dialog lasses Presentation and Manipulator.

These lasses represent the interfae between humans and an objet.

A COA objet provides the neessary information in a generi fashion, to allow the on-

strution of nearly arbitrary instantiations of suh interfaes.

This inludes the provision of omponents or the generation of omplete GUI's, douments

and reports, integration of information in hierarhi information systems, simple text

interfaes et.

For more information on these lasses see [?℄.

6.2 COA and OOV

The seond example illustrates the interplay between COA and OOV.

Objet Oriented Views allow the reation of subjet oriented lass models, whih represent

a "personal" view on a omplex system. The system needs not to be desribed by only

one big lass model, representing a ompromise of the di�erent views.

To preserve objet identity and to provide di�erent interfaes to the objets as needed

by the di�erent views, COA objets are useful to provide the neessary exibility. COA



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 17

objets thus at as the "glue" between the di�erent views.

For details on OOVs see [?℄.

7 Drawbaks

A lot of the features presented in this doument are of ourse features one an imagine to

be integrated in future OOPL's. Sine the approah hoosen here is to use a lass library,

the integration with the programming language used is not given to an extent as it is

desirable.

An approah to solve this problem is to use ode generators and design tools. There are

lots of tasks a ode generator an do, not only improving the integration of these features.

Ideally, it reates, given on a short desription of the Kernel, a omplete COA objet

with a rih set of default funtionalities. These an than be modi�ed in more detail, if

neessary.

A speial and more fundamental problem should be metioned here. This problem is related

to the extration of features from the Kernel objet into dynami aessory objets.

These aessory objets have to be bound to the kernel somehow. Ideally, as shown in the

following �gure, this would be performed using a "that-pointer", linking the two objets

together as a form of realising an inheritane relationship.

The term "that-pointer" is hoosen to resemble the "this-pointer" in C++ objets.

B

D

that

D

B

An instane of a lass D

with a base lass B.

The same objet with a

dynami bound instane of B.

The problem is, that between objets linked this way there is primarily no longer any

support of objet oriented features like dynami binding (polymorphism), being in a

lass's sope or privileged aess.

2

As a workaround for this a preompiler an serve. Alternatively, a ode generator an

be able to resolve the relevant soping problems. The most diÆult task is to resolve

dynami binding between the distint objets.

2

Providing this form of linkage is not an easy task, neither on the semanti level of the programming

language nor on the implementaion level for ompiler builders.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 18

8 Taking Bene�t

The COA arhiteture is designed to introdue exibility and dynamis into objets. This

an be used with pro�t for several purposes:

Saving Work

COA objets an save work, sine a lot of e�ort for managing and equipping objets

has to be done only one within this arhiteture. The generation of the neessary

equipment an be automated to some extend.

Resolving Design Conits

Providing more and espeially dynami instruments for struturing objets COA an

help to resolve design onits without paying the prie of managing enapsulated

behaviour. Systems an be broken down in even smaller piees, one an fous on

and survey.

Adaptive Objets

COA objets are provided with abilities for adapting themselves to di�erent environ-

ments, sine the information is available in a generi fashion. Also they an adopt

to di�erent requirements in the same environment, depending on the availability of

servies and resoures.

Oeonomi Resoure Management

Not every feature a COA objet may need has to be available at any time but an

be reated dynamially on demand. Used for many objets in a system, this an

save notieable amounts of system resoures.

Supporting Portability

Sine COA objets are designed to meet new requirements, they are not bound as

strong to a given lass model as ordinary objets are. The possibility to embed

them in di�erent lass models is part of the onept, and not a problem arising

when protability is requested afterwards.

Cooperativity

COA objets do not only allow the existene of other omponents, suh as lass

libraries, it is a entral goal of COA to support the oexistene with them. Sine

there are primarily no requirements on Kernels, eah instane of any arbitrary lass

an serve as a Kernel.



The CyberSpae Arhiteture Projet - Doument CAP-10/95-COA - page 19

9 Conlusion

The CyberSpae Objet Arhiteture, based on standard objets and being a straightfor-

ward extension of them, an help to meet the requirements of todays omplex and open

systems.

COA objets are exible, adaptive, and prepared for porting. Using the arhiteture an

save work, resolv design onits and allow oeonomi management of resoures.


