
The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 1

CAP

The CyberSpae Arhiteture Projet

1994,95 by Andreas Leue

Introdution

How to Survive in the CyberSpae

This paper shows the basi onepts and omponents of the CyberSpae Arhiteture

Projet (CAP). The �rst part introdues the main ideas, while the seond part desribes

the CyberSpae Foundation (CSF), the CyberSpae Objet Arhiteture (COA), Objet

Oriented Views (OOV) and gives some notes on how to use CAP best.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 2

1 Introdution

Today's open and omplex environments, haraterized by athwords like heterogenous,

distributed platforms, multiple languages, worldwide networking onnetions, hanging

software environments, unforeseeable new loations and future onditions, multi media

and evolving systems form a highly omplex, enormous big and evolving wolrd wide

distributed data proessing system: the CyberSpae

1

.

Currently there is a big gap between these various evolving sophistiated modern teh-

nologies on the one hand side and users with their real world problems on the other, not

knowing how to build on that kind of quiksand.

The goal of the CyberSpae Arhiteture Projet (CAP) is to provide exible means to

sreen respetive areas from eah other, nevertheless enabling exible aess from side to

side.

To ahieve this goal, a onsequent appliation of objet oriented design onepts is used

within CAP, to provide exible mehanisms for enapsulation of inner omponents, ex-

apsulation of the outer world and the provision of highly abstrat, general and ommonly

useful building bloks; see the following �gure.

1

The term CyberSpae was originally introdued by William Gibson in his siene �tion "Neuro-

maner". It is sometimes used only for high quality visualisations, whih is not meant here.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 3

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

Obj

A software omponent (objet) embedded in an environment made of several further

omponents, oating around in CyberSpae. Aess from the inside to the outer world is

made through an interfae (top left), a "view" of the outer world. Correspondingly, the

objet itself is aessed from the outside world through an interfae (bottom right),

representing a "view" of that objet.

These mehanisms allow to reate learly de�ned software omponents through the pro-

vision of frames foussing on the relevant aspets - inreasing the number of reusable

system omponents - and to aess suh omponents from the outside through intelligent,

exible shells.

The CyberSpae Arhiteture does not provide yet another losed layer requiring to build

every software on to take bene�t. Instead, exible and movable building bloks are pro-

vided, whih are prepared to oexist with other omponents, prepared to be hanged or

replaed.

All in all the CyberSpae Arhiteture tries to integrate various modern instruments and

tehnologies into a exible frame made of intelligent, abstrat interfaes, providing easy

and expandable aess to the various resoures available.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 4

2 Main Ideas

This setion presents the main ideas whih guided the design of CAP.

2.1 The Part and The Whole

Openness means being aessible if and where neessary.

Completeness in onjuntion with openness requires to build integrated systems, whose

omponents are separable.

Cooperativity of omponents requires them to be easy integratable, while ooperativity of

integrated systems means to make it easy to separate ooperative omponents.

Good systems and their omponents are open, integrated, inegratable and ooperative.

Their design reets the fat, that nothing is unhangeable, but the task they shall perform

is done well.

To build suh systems, it follows the neessity to arefully reate the system omponents,

to ask whih parts are omponent- and whih are systemspei� and to apply objet

oriented design guidelines to struture the system on all imaginable levels.

2.2 Subjet Orientation

Shifting the fous from tehnologies to whole systems and their environments emphasizes

the role of tasks and users.

Subjet Orientation means to onentrate not only on the objets to build, but also on

the users of these objets, their views of them and their needs.

Subjet Orientation is for one thing a diret onsequene of applying objet oriented design

priniples and for another an important addition to objet orientation.

2.3 Capture, Don't Code

"Capture, Don't Code" is an old design priniple: Try to apture the things as they are

given instead of oding the onsequenes, i.e mixing what you want to desribe with the

properties of a spei� language. This mixture renders it more diÆult to reuse the oded

information or to do hanges.

A problem oriented desription is desirable, allowing to desribe fats without regard to

onrete solutions or implementations. Ideally, suh a desription an be used to generate

a solution automatially.

Naturally, no language is really "general". But there are more appropriate and less appro-

priate ones. Thus, providing { probably several { languages and onepts for formulating

problems as desriptive as possible helps to inrease maintainability and reusability.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 5

3 The Arhiteture

The omponents

of CAP: the

CyberSpae

Foundation (CSF)

provides basi

building bloks, Objet

Oriented Views

(OOV) serve as

interfaes to the

outside world while

the CyberSpae Objet

Arhiteture (COA)

provides exible

interfaes to others.

COA

CSF

OOV

Access from
Outside

Access to
the World

General Building Blocks
Abstract Classes as

The CyberSpae Arhiteture is based mainly on the omponents shown in the above

�gure. Spei�ally, these are

2

:

CSF - The CyberSpae Foundation

aptures various aspets of software and resoures and provides aess to them

in a primarily very general form. It abstrats from various usually uninteresting

and implementation or system spei� details and therefore allows to fous on the

relevant aspets. There are no tehnial elements ontained, but basi omponents

to a high degree on a purely logial level.

COA - The CyberSpae Objet Arhiteture

desribes a model for objets designed to meet the requirements given by todays

open and omplex systems and environments. It is based on and extends the urrent

objet model, thereby introduing degrees of freedom between design and program-

ming and �ts seemlessly into it. COA allows to aess objets in a spohistiated,

exible manner.

OOV - Objet Oriented Views

support the integration of di�erent views of users into objet oriented systems. Suh

views are a diret onsequene of applying the priniple of subjet orientation to

objet oriented modelling. They serve as �lters for pereiving the world, providing

a platform to build spei� appliations on.

These omponents are desribed in the following setions.

2

For details refer to the respetive doumentation ([?℄, [?℄, [?℄)

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 6

3.1 The CyberSpae Foundation

CSF

The CyberSpae Foundation is the base of CAP. It provides a set of fundamental terms

for the design of software systems in form of highly abstrat base lasses.

The CSF aptures a wide range of aspets of software systems suh as data struture

(bags, sets, lists et.), presentation and manipulation (user interfaes), persisteny (data

bases), spatial aspets, loation et.

The design of the CSF does not fous and is not bound to any spei� implementation.

Instead the basi properties of the "CyberSpae" itself are examined. This leads to a high

degree of generality and therefore portability of the CSF lasses.

This basi CSF interfae allows to enapsulate several spei� servies like more tehnial

standard lass libraries, user interfaes, data bases, ommuniation libraries et.

The CSF serves as an anhor for these servies. The aess to more spei� features is of

ourse possible by using derivation and other objet oriented features.

3.2 The CyberSpae Objet Arhiteture

COA

The CyberSpae Objet Arhiteture (COA) is a straightforward extension and improve-

ment of the ommon objet model. It is based on and made of ordinary objets, and COA

objets just look like these, making integration of COA objets easy. COA is an objet

arhiteture, providing servies and a framework for building sophistiated objets.

COA objets are designed to meet the requirements given by todays omplex and open

systems. They are exible, adaptive, they have dynami interfaes and are prepared for

porting, even at runtime.

The onept of COA is to fous from the start on openness. Objets plaed in lass

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 7

hierarhies and onrete systems should not be bound there, as the hierarhies and the

systems may hange while the objets shall persist.

If system requirements ause too muh tension on an objet, the results of modeling it

will most likely be unsatisfying, leading to either overloaded or unomplete models.

COA provides means to relax the tension aused by numerous system requirements, with-

out disregarding parts of them.

The equipment with rih information in a highly generi fashion enables COA objets to

reat exible and adaptable to their environment.

Using COA an save work, resolv design onits and allow oeonomi resoure manage-

ment.

3.3 Objet Oriented Views

OOV

Objet Oriented Views (OOV) are small, surveyable lass and objet models. The purpose

of the onept of OOVs is to emphasize the role of suh small models.

OOVs serve as the interfae between subsystems and their environment. Modeling these

OOV interfaes gives a preise desription of the oupling of the subsystems to their

environment, whih is a valueable base for porting, adapting or maintaining them.

Furthermore, OOVs provide a desription of a system related to a users point of view, thus

inorporating subjet orientation. Therefore they help to fous on the user's needs without

making ompromises in formulation, sine the spei�ation is not taken and mixed, but

saved.

An objet oriented system with OOVs is desribed by one or more "entral" lass models,

and several OOVs.

The emphasis of the subjetive role of lass models and arbitrarily oupled subsystems, is

in ontrast to hierarhial and somewhat monolithi lass models more suitable to desribe

omplex and open systems.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 8

4 Using the Arhiteture

@[Dlg]@

Tp=[3,7];

Nm=Cnt;

CAP
Object

Design/Specification

Generation
Code

CAP objets are build on the omponents CSF, COA and OOV, a exible, powerful and

movable platform. To take full bene�t of the power of CAP, appropriate design and

spei�ation methods and languages are neessary, embedded in work benh tools and

integrated with ode generators.

CSF, COA and OOV provide a powerful platform to build high quality CAP objets on.

To simplify the proess of reating CAP objets and to preserve maintainability, under-

standability and reusage of them, appropriate design tools are neessary.

It is not the goal of CAP to introdue "The" CAP Designer, or "The" CAP Language

sine due to the design priniple of openness CAP objets should be editable from ideally

arbitrary platforms, not only from one. Naturally, this implies probably the renuniation

to edit some (or many) aspets, depending on the apabilities of the respetive design

tool.

Instead, another approah is used within CAP, whih is outlined in the next setion.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 9

4.1 Design and Spei�ation

The design and spei�ation support provided by CAP onsists of an extendable set of {

probably simple and small { expression apabilities like languages and graphi represen-

tations.

These apabilities may be used independently or an be ombined to larger and more

omplete ones. There may exist several onversion tools (generalized ode generators),

whih an translate from one kind of spei�ation to another.

Ideally, all spei�ation douments reated are linked somehow together using the on-

version tools, forming a graph whose pathes result �nally in a omplete implementation,

as shown exemplary in the following �gure.

@[Rel]@
ABC = {
 { X,Y },
 { Y,Z },
 { R,S }

@[Err]@

Tx="Fatal

Error...

@[Doc]@

Tx="The

following

@[Dlg]@

Tp=[3,7];

Nm=Cnt;

class X

};

relations

{ public:

 X();

 ~X();

};

Specification

Dlg-Language

Graphic

Conversion

Rel-Language
Generation

Doc-Language

Generation

Code
Generation

Generation

Extraction

Extraction

Integration

Documentation

Err-Language

A spei�ation graph. The various douments are linked together with various tools,

performing some kind of onversion, extration or integration.

As a �nal step the various tools and appropriate editors have to be integrated into several

workbenhes and design environments. This system of tools and editors ould be build

itself on the base of CAP objets.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 10

4.1.1 A Smart Spei�ation Approah

To allow the easy invention of small spei�ation languages, a prototype was already

implemented whih performs the following tasks:

Extration of small spei�ation piees from ode or text douments. These spei-

�ation piees are denoted somehow, opening a "sub-ontext" in their enlosing

douments. E.g., in C or C

++

douments they are enlosed in ommentary se-

tions, whose �rst ontent is a ontext introduer "�[name of ontext℄� ...". The

ontext de�nes a language to be used inside the ontext.

Code Generation based on information desribed in a C-style strutured tag language.

The de�nition of new ode generators for new (simple) languages an be very easy

performed: only a skeleton doument for the target ode has to be reated. Meh-

anisms to aess the parsed information are available, if neessary, all features of

C

++

may be used inside these skeletons.

Integration of reated ode into existing ode or skeleton �les, allowing rereation and

preservation of manual hanges. Generated information an be integrated in dou-

ments at arbitrary and multiple plaes, preserving hanges at user entry points and

allowing nested insertions.

These three tasks may be either performed independently or used together. If used in on-

juntion, the only thing to do to introdue a new language for use inside ode douments

and to reintegrate the result is to de�ne the skeleton mentioned above.

The CyberSpae Arhiteture Projet - Doument CAP-11/95-CAP - page 11

5 Conlusion

The CAP is a unifying and integrating approah to put several onepts for building

software together.

The projet fouses on building robust, exible, rih equipped, powerful software ompo-

nents and systems in today's evolving software world. Following the arhitetur helps to

build reusable and portable omponents.

All in all, CAP helps to survive in the CyberSpae.

