The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 1

The CyberSpace Architecture Project

(©1994,95 by Andreas Leue

INTRODUCTION

How TO SURVIVE IN THE CYBERSPACE

This paper shows the basic concepts and components of the CyberSpace Architecture
Project (CAP). The first part introduces the main ideas, while the second part describes
the CyberSpace Foundation (CSF), the CyberSpace Object Architecture (COA), Object
Oriented Views (OOV) and gives some notes on how to use CAP best.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 2

1 Introduction

Today’s open and complex environments, characterized by catchwords like heterogenous,
distributed platforms, multiple languages, worldwide networking connections, changing
software environments, unforeseeable new locations and future conditions, multi media
and evolving systems form a highly complex, enormous big and evolving wolrd wide
distributed data processing system: the CyberSpace'.

Currently there is a big gap between these various evolving sophisticated modern tech-
nologies on the one hand side and users with their real world problems on the other, not
knowing how to build on that kind of quicksand.

The goal of the CyberSpace Architecture Project (CAP) is to provide flexible means to
screen respective areas from each other, nevertheless enabling flexible access from side to
side.

To achieve this goal, a consequent application of object oriented design concepts is used
within CAP, to provide flexible mechanisms for encapsulation of inner components, ex-
capsulation of the outer world and the provision of highly abstract, general and commonly
useful building blocks; see the following figure.

!The term CyberSpace was originally introduced by William Gibson in his science fiction ”Neuro-
mancer”. It is sometimes used only for high quality visualisations, which is not meant here.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 3

50’07 595° 0%

=l

&

=]

A software component (object) embedded in an environment made of several further
components, floating around in CyberSpace. Access from the inside to the outer world is
made through an interface (top left), a "view” of the outer world. Correspondingly, the

object itself is accessed from the outside world through an interface (bottom right),
representing a “view” of that object.

These mechanisms allow to create clearly defined software components through the pro-
vision of frames focussing on the relevant aspects - increasing the number of reusable

system components - and to access such components from the outside through intelligent,
flexible shells.

The CyberSpace Architecture does not provide yet another closed layer requiring to build
every software on to take benefit. Instead, flexible and movable building blocks are pro-
vided, which are prepared to coexist with other components, prepared to be changed or
replaced.

All in all the CyberSpace Architecture tries to integrate various modern instruments and
technologies into a flexible frame made of intelligent, abstract interfaces, providing easy
and expandable access to the various resources available.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 4

2 Main Ideas

This section presents the main ideas which guided the design of CAP.

2.1 The Part and The Whole

Openness means being accessible if and where necessary.

Completeness in conjunction with openness requires to build integrated systems, whose
components are separable.

Cooperativity of components requires them to be easy integratable, while cooperativity of
integrated systems means to make it easy to separate cooperative components.

Good systems and their components are open, integrated, inegratable and cooperative.
Their design reflects the fact, that nothing is unchangeable, but the task they shall perform
is done well.

To build such systems, it follows the necessity to carefully create the system components,
to ask which parts are component- and which are systemspecific and to apply object
oriented design guidelines to structure the system on all imaginable levels.

2.2 Subject Orientation

Shifting the focus from technologies to whole systems and their environments emphasizes
the role of tasks and users.

Subject Orientation means to concentrate not only on the objects to build, but also on
the users of these objects, their views of them and their needs.

Subject Orientation is for one thing a direct consequence of applying object oriented design
principles and for another an important addition to object orientation.

2.3 Capture, Don’t Code

"Capture, Don’t Code” is an old design principle: Try to capture the things as they are
given instead of coding the consequences, i.e mixing what you want to describe with the
properties of a specific language. This mixture renders it more difficult to reuse the coded
information or to do changes.

A problem oriented description is desirable, allowing to describe facts without regard to
concrete solutions or implementations. Ideally, such a description can be used to generate
a solution automatically.

Naturally, no language is really " general”. But there are more appropriate and less appro-
priate ones. Thus, providing — probably several — languages and concepts for formulating
problems as descriptive as possible helps to increase maintainability and reusability.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 5

3 The Architecture

Accessto
the World

Access from

The components QOutside

of CAP: the
CyberSpace
Foundation (CSF)
provides basic
building blocks, Object
Oriented Views
(O0V) serve as
interfaces to the
outside world while
the CyberSpace Object

Architecture (COA) Abstract Classes as
provides flexible General Bwldmg Blocks

interfaces to others. —
interfaces to others .|‘| | ||%|

The CyberSpace Architecture is based mainly on the components shown in the above
figure. Specifically, these are?:

CSF - The CyberSpace Foundation

captures various aspects of software and resources and provides access to them
in a primarily very general form. It abstracts from various usually uninteresting
and implementation or system specific details and therefore allows to focus on the
relevant aspects. There are no technical elements contained, but basic components
to a high degree on a purely logical level.

COA - The CyberSpace Object Architecture

describes a model for objects designed to meet the requirements given by todays
open and complex systems and environments. It is based on and extends the current
object model, thereby introducing degrees of freedom between design and program-
ming and fits seemlessly into it. COA allows to access objects in a spohisticated,
flexible manner.

OOV - Object Oriented Views

support the integration of different views of users into object oriented systems. Such
views are a direct consequence of applying the principle of subject orientation to
object oriented modelling. They serve as filters for perceiving the world, providing
a platform to build specific applications on.

These components are described in the following sections.

2For details refer to the respective documentation ([?], [?], [?])

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 6

3.1 The CyberSpace Foundation

CSF

The CyberSpace Foundation is the base of CAP. It provides a set of fundamental terms
for the design of software systems in form of highly abstract base classes.

The CSF captures a wide range of aspects of software systems such as data structure
(bags, sets, lists etc.), presentation and manipulation (user interfaces), persistency (data
bases), spatial aspects, location etc.

The design of the CSF does not focus and is not bound to any specific implementation.
Instead the basic properties of the ” CyberSpace” itself are examined. This leads to a high
degree of generality and therefore portability of the CSF classes.

This basic CSF interface allows to encapsulate several specific services like more technical
standard class libraries, user interfaces, data bases, communication libraries etc.

The CSF serves as an anchor for these services. The access to more specific features is of
course possible by using derivation and other object oriented features.

3.2 The CyberSpace Object Architecture

COA

The CyberSpace Object Architecture (COA) is a straightforward extension and improve-
ment of the common object model. It is based on and made of ordinary objects, and COA
objects just look like these, making integration of COA objects easy. COA is an object
architecture, providing services and a framework for building sophisticated objects.

COA objects are designed to meet the requirements given by todays complex and open
systems. They are flexible, adaptive, they have dynamic interfaces and are prepared for
porting, even at runtime.

The concept of COA is to focus from the start on openness. Objects placed in class

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 7

hierarchies and concrete systems should not be bound there, as the hierarchies and the
systems may change while the objects shall persist.

If system requirements cause too much tension on an object, the results of modeling it
will most likely be unsatisfying, leading to either overloaded or uncomplete models.

COA provides means to relax the tension caused by numerous system requirements, with-
out disregarding parts of them.

The equipment with rich information in a highly generic fashion enables COA objects to
react flexible and adaptable to their environment.

Using COA can save work, resolv design conflicts and allow oeconomic resource manage-
ment.

3.3 Object Oriented Views

OQV

Object Oriented Views (OOV) are small, surveyable class and object models. The purpose
of the concept of OOVs is to emphasize the role of such small models.

OOVs serve as the interface between subsystems and their environment. Modeling these
OOV interfaces gives a precise description of the coupling of the subsystems to their
environment, which is a valueable base for porting, adapting or maintaining them.

Furthermore, OOVs provide a description of a system related to a users point of view, thus
incorporating subject orientation. Therefore they help to focus on the user’s needs without
making compromises in formulation, since the specification is not taken and mixed, but
saved.

An object oriented system with OOVs is described by one or more ”central” class models,
and several OOVs.

The emphasis of the subjective role of class models and arbitrarily coupled subsystems, is
in contrast to hierarchical and somewhat monolithic class models more suitable to describe
complex and open systems.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 8

4 Using the Architecture

Design/Specification

Code
Generation

CAP objects are build on the components CSF, COA and OOV, a flexible, powerful and
movable platform. To take full benefit of the power of CAP, appropriate design and
specification methods and languages are necessary, embedded in work bench tools and
integrated with code generators.

CSF, COA and OOQV provide a powerful platform to build high quality CAP objects on.
To simplify the process of creating CAP objects and to preserve maintainability, under-
standability and reusage of them, appropriate design tools are necessary.

It is not the goal of CAP to introduce "The” CAP Designer, or "The” CAP Language
since due to the design principle of openness CAP objects should be editable from ideally
arbitrary platforms, not only from one. Naturally, this implies probably the renunciation
to edit some (or many) aspects, depending on the capabilities of the respective design
tool.

Instead, another approach is used within CAP, which is outlined in the next section.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 9

4.1 Design and Specification

The design and specification support provided by CAP consists of an extendable set of —
probably simple and small — expression capabilities like languages and graphic represen-
tations.

These capabilities may be used independently or can be combined to larger and more
complete ones. There may exist several conversion tools (generalized code generators),
which can translate from one kind of specification to another.

Ideally, all specification documents created are linked somehow together using the con-
version tools, forming a graph whose pathes result finally in a complete implementation,
as shown exemplary in the following figure.

Err-Language

Extraction @Er]@
—_ ‘
e Tx="Fat al
Seecification E Error. ..

ol atio Documentation
_='I

A specification graph. The various documents are linked together with various tools,
performing some kind of conversion, extraction or integration.

As a final step the various tools and appropriate editors have to be integrated into several
workbenches and design environments. This system of tools and editors could be build
itself on the base of CAP objects.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 10

4.1.1 A Smart Specification Approach

To allow the easy invention of small specification languages, a prototype was already
implemented which performs the following tasks:

Extraction of small specification pieces from code or text documents. These speci-
fication pieces are denoted somehow, opening a ”sub-context” in their enclosing
documents. E.g., in C or C++ documents they are enclosed in commentary sec-
tions, whose first content is a context introducer ”@[name of context]@ ...”. The
context defines a language to be used inside the context.

Code Generation based on information described in a C-style structured tag language.
The definition of new code generators for new (simple) languages can be very easy
performed: only a skeleton document for the target code has to be created. Mech-
anisms to access the parsed information are available, if necessary, all features of
C++ may be used inside these skeletons.

Integration of created code into existing code or skeleton files, allowing recreation and
preservation of manual changes. Generated information can be integrated in docu-
ments at arbitrary and multiple places, preserving changes at user entry points and
allowing nested insertions.

These three tasks may be either performed independently or used together. If used in con-
junction, the only thing to do to introduce a new language for use inside code documents
and to reintegrate the result is to define the skeleton mentioned above.

The CyberSpace Architecture Project - Document CAP-11/95-CAP - page 11

5 Conclusion

The CAP is a unifying and integrating approach to put several concepts for building
software together.

The project focuses on building robust, flexible, rich equipped, powerful software compo-
nents and systems in today’s evolving software world. Following the architectur helps to
build reusable and portable components.

All in all, CAP helps to survive in the CyberSpace.

